Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review

Springer Science and Business Media LLC - Tập 23 - Trang 17859-17879 - 2016
Muhammad Rizwan1, Shafaqat Ali1, Muhammad Adrees1, Hina Rizvi1, Muhammad Zia-ur-Rehman2, Fakhir Hannan1, Muhammad Farooq Qayyum3, Farhan Hafeez4, Yong Sik Ok5
1Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
2Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
3Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
4Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
5Korea Biochar Research Centre & Department of Biological Environment, Kangwon National University, Chuncheon, South Korea

Tóm tắt

Cadmium (Cd) is one of the main pollutants in paddy fields, and its accumulation in rice (Oryza sativa L.) and subsequent transfer to food chain is a global environmental issue. This paper reviews the toxic effects, tolerance mechanisms, and management of Cd in a rice paddy. Cadmium toxicity decreases seed germination, growth, mineral nutrients, photosynthesis, and grain yield. It also causes oxidative stress and genotoxicity in rice. Plant response to Cd toxicity varies with cultivars, growth condition, and duration of Cd exposure. Under Cd stress, stimulation of antioxidant defense system, osmoregulation, ion homeostasis, and over production of signaling molecules are important tolerance mechanisms in rice. Several strategies have been proposed for the management of Cd-contaminated paddy soils. One such approach is the exogenous application of hormones, osmolytes, and signaling molecules. Moreover, Cd uptake and toxicity in rice can be decreased by proper application of essential nutrients such as nitrogen, zinc, iron, and selenium in Cd-contaminated soils. In addition, several inorganic (liming and silicon) and organic (compost and biochar) amendments have been applied in the soils to reduce Cd stress in rice. Selection of low Cd-accumulating rice cultivars, crop rotation, water management, and exogenous application of microbes could be a reasonable approach to alleviate Cd toxicity in rice. To draw a sound conclusion, long-term field trials are still required, including risks and benefit analysis for various management strategies.

Tài liệu tham khảo

Adhikari T, Tel-Or E, Libal Y, Shenker M (2006) Effect of cadmium and iron on rice (Oryza sativa L.) plant in chelator-buffered nutrient solution. J Plant Nutr 29:1919–1940 Adrees M, Ali S, Rizwan M, Rehman MZ, Ibrahim M, Abbas F, Farid M, Qayyum MK, Irshad MK (2015a) Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: a review. Ecotoxicol Environ Saf 119:186–197 Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Rehman MZ, Irshad MK, Bharwana SA (2015b) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162 Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD, Lee BH (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746 Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59:381–392 Arao T, Ae N (2003) Genotypic variations in cadmium levels of rice grain. Soil Sci Plant Nutr 49:473–479 Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S (2009) Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environ Sci Technol 43:9361–9367 Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch Agron Soil Sci 62:533–546 Asgher M, Khan MIR, Anjum NA, Khan NA (2014) Minimising toxicity of cadmium in plants—role of plant growth regulators. Protoplasma 252:399–413 Aziz R, Rafiq MT, Li T, Liu D, He Z, Stoffella PJ, Sun KW, Xiaoe Y (2015) Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). J Agric Food Chem 63:3599–3608 Bai Y, Gu C, Tao T, Chen G, Shan Y (2013) Straw incorporation increases solubility and uptake of cadmium by rice plants. Acta Agric Scand Sect B Soil Plant Sci 63:193–199 Basnet P, Amarasiriwardena D, Wu F, Fu Z, Zhang T (2014) Elemental bioimaging of tissue level trace metal distributions in rice seeds (Oryza sativa L.) from a mining area in China. Environ Pollut 195:148–156 Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Xie D, Zheng X, Zheng J, Chang A (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383 Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wong S, Chia C, Marjo C, Gong B, Munroe P, Donne S (2014a) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128 Bian R, Zhang A, Li L, Pan G, Zheng J, Zhang X, Chang A (2014b) Effect of municipal biowaste biochar on greenhouse gas emissions and metal bioaccumulation in a slightly acidic clay rice paddy. BioResources 9:685–703 Bian R, Li L, Bao D, Zheng J, Zhang X, Zheng J, Liu X, Cheng K, Pan G (2016) Cd immobilization in a contaminated rice paddy by inorganic stabilizers of calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environ Sci Pollut Res. doi:10.1007/s11356-016-6214-3 Cai Y, Lin L, Cheng W, Zhang G, Wu F (2010) Genotypic dependent effect of exogenous glutathione on Cd-induced changes in cadmium and mineral uptake and accumulation in rice seedlings (Oryza sativa). Plant Soil Environ 56:524–533 Cai Y, Cao F, Cheng W, Zhang G, Wu F (2011a) Modulation of exogenous glutathione in phytochelatins and photosynthetic performance against Cd stress in the two rice genotypes differing in Cd tolerance. Biol Trace Elem Res 143:1159–1173 Cai Y, Cao F, Wei K, Zhang G, Wu F (2011b) Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. J Hazard Mater 192:1056–1066 Cao F, Liu L, Ibrahim W, Cai Y, Wu F (2013a) Alleviating effects of exogenous glutathione, glycinebetaine, brassinosteroids and salicylic acid on cadmium toxicity in rice seedlings (Oryza Sativa). Agrotechnol 2:1–6 Cao F, Wang N, Zhang M, Dai H, Dawood M, Zhang G, Wu F (2013b) Comparative study of alleviating effects of GSH, Se and Zn under combined contamination of cadmium and chromium in rice (Oryza sativa) L. BioMetals 26:297–308 Cao F, Wang R, Cheng W, Zeng F, Ahmed IM, Hu X, Zhang G, Wu F (2014) Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Sci Total Environ 496:275–281 Cao F, Cai Y, Liu L, Zhang M, He X, Zhang G, Wu F (2015) Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regul 75:715–723 Cattani I, Romani M, Boccelli R (2008) Effect of cultivation practices on cadmium concentration in rice grain. Agron Sustain Dev 28:265–271 Chao YY, Chen CY, Huang WD, Kao CH (2010a) Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant Soil 329:327–337 Chao YY, Hong CY, Kao CH (2010b) The decline in ascorbic acid content is associated with cadmium toxicity of rice seedlings. Plant Physiol Biochem 48:374–381 Chen MX, Lei C, XiangZhen S, XiaoYan W, QingPing Q, Wei L (2014a) Effect of iron plaque and selenium on cadmium uptake and translocation in rice seedlings (Oryza sativa) grown in solution culture. Int J Agric Biol 16:1159–1164 Chen S, Xu C, Zhang W, Wu Q (2014b) Combined application of biochar and nitrogen fertilizers reducing heavy metals contents in potted rice planted in contaminated soil. Trans Chin Soc Agr Eng 30:189–197 Chen J, Liu X, Li L, Zheng J, Qu J, Zheng J, Qu J, Zhang X, Pan G (2015) Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short-term biochar treatment across three sites from South China. Appl Soil Ecol 91:68–79 Chen D, Guo H, Li R, Li L, Pan G, Chang A, Joseph S (2016) Low uptake affinity cultivars with biochar to tackle Cd-tainted rice—a field study over four rice seasons in Hunan, China. Sci Total Environ 541:1489–1498 Cheng H, Wang M, Wong MH, Ye Z (2014) Does radial oxygen loss and iron plaque formation on roots alter Cd and Pb uptake and distribution in rice plant tissues? Plant Soil 375:137–148 Cheng W, Zhang GP, Yao HG, Wu W, Xu M (2006) Genotypic and environmental variation in cadmium, chromium, arsenic, nickel, and lead concentrations in rice grains. J Zhejiang Univ Sci B 7:565–571 Cho SC, Chao YY, Kao CH (2012) Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings. J Plant Physiol 169:892–898 Choppala G, Saifullah, Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ashwath N, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391 Chou TS, Chao YY, Kao CH (2012) Involvement of hydrogen peroxide in heat shock- and cadmium-induced expression of ascorbate peroxidase and glutathione reductase in leaves of rice seedlings. J Plant Physiol 169:478–486 Cui Y, ZHANG X, Yongguan ZHU (2008) Does copper reduce cadmium uptake by different rice genotypes. J Environ Sci 20:332–338 Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice Cd uptake in a contaminated paddy soil: a two-year field experiment. BioResources 6:2605–2618 de Livera J, McLaughlin MJ, Beak D, Hettiarachchi GM, Kirby J (2011a) Release of dissolved cadmium and sulfur nanoparticles from oxidizing sulfide minerals. Soil Sci Soc Am J 75:842–854 de Livera J, McLaughlin MJ, Hettiarachchi GM, Kirby JK, Beak DG (2011b) Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Sci Total Environ 409:1489–1497 Ding Y, Feng R, Wang R, Guo J, Zheng X (2014) A dual effect of Se on Cd toxicity: evidence from plant growth, root morphology and responses of the antioxidative systems of paddy rice. Plant Soil 375:289–301 Du Y, Hu XF, Wu XH, Shu Y, Jiang Y, Yan XJ (2013) Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China. Environ Monit Assess 185:9843–9856 Fahad S, Hussain S, Khan F, Wu C, Saud S, Hassan S, Ahmad N, Gang D, Ullah A, Huang J (2015) Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions. Environ Sci Pollut Res 22:12424–12434 Fan JL, Hu ZY, Ziadi N, Xia X (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environ Pollut 158:409–415 Farooq H, Asghar HN, Khan MY, Saleem M, Zahir ZA (2015) Auxin-mediated growth of rice in cadmium-contaminated soil. Turk J Agric For 39:272–276 Farooq MA, Ali S, Hameed A, Bharwana SA, Rizwan M, Ishaque W, Farid M, Mahmood K, Iqbal Z (2016) Cadmium stress in cotton seedlings: physiological, photosynthesis and oxidative damages alleviated by glycinebetaine. S Afr J Bot 104:61–68 Fatima RN, Javed F, Wahid A (2014) Salicylic acid modifies growth performance and nutrient status of rice (Oryza sativa) under cadmium stress. Int J Agric Biol 16:1083–1090 Feng R, Wei C, Tu S, Ding Y, Song Z (2013) A dual role of Se on Cd toxicity: evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice. Biol Trace Elem Res 151:113–121 Fulda B, Voegelin A, Kretzschmar R (2013) Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ Sci Technol 47:12775–12783 Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46 Gao MX, Hu ZY, Wang GD, Xia X (2010) Effect of elemental sulfur supply on cadmium uptake into rice seedlings when cultivated in low and excess cadmium soils. Commun Soil Sci Plant Anal 41:990–1003 Gu HH, Qiu H, Tian T, Zhan SS, Deng THB, Chaney RL, Wang SZ, Tang YT, Morel JL, Qiu RL (2011) Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere 83:1234–1240 Gu HH, Li FP, Guan X, Xu YL, Liu YJ, Chen XT, Wang Z (2013) Effects of fly ash on heavy metal uptake of rice growing on multi-metal contaminated acidic soil. Adv Mater Res 680:94–99 Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213 Guo B, Liang Y, Li Z, Guo W (2007a) Role of salicylic acid in alleviating cadmium toxicity in rice roots. J Plant Nutr 30:427–439 Guo B, Liang YC, Zhu YG, Zhao FJ (2007b) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa L.) subjected to cadmium stress. Environ Pollut 147:743–749 Han C, Wu L, Tan W, Zhong D, Huang Y, Luo Y, Christie P (2012) Cadmium distribution in rice plants grown in three different soils after application of pig manure with added cadmium. Environ Geochem Health 34:481–492 Hassan MJ, Shao G, Zhang G (2005a) Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. J Plant Nutr 28:1259–1270 Hassan MJ, Wang F, Ali S, Zhang G (2005b) Toxic effect of cadmium on rice as affected by nitrogen fertilizer form. Plant Soil 277:359–365 Hassan MJ, Zhang G, Wu F, Wei K, Chen Z (2005c) Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice. J Plant Nutr Soil Sci 168:255–261 Hassan MJ, Zhu Z, Ahmad B, Mahmood Q (2006) Influence of cadmium toxicity on rice genotypes as affected by zinc, sulfur and nitrogen fertilizers. Caspian J Environ Sci 4:1–8 Hassan MJ, Shafi M, Zhang G, Zhu Z, Qaisar M (2008a) The growth and some physiological responses of rice to Cd toxicity as affected by nitrogen form. Plant Growth Regul 54:125–132 Hassan MJ, Zhang G, Zhu Z (2008b) Influence of cadmium toxicity on plant growth and nitrogen uptake in rice as affected by nitrogen form. J Plant Nutr 31:251–262 He J, Zhu C, Ren Y, Yan Y, Jiang D (2006) Genotypic variation in grain cadmium concentration of lowland rice. J Plant Nutr Soil Sci 169:711–716 He J, Ren Y, Pan X, Yan Y, Zhu C, Jiang D (2010) Salicylic acid alleviates the toxicity effect of cadmium on germination, seedling growth, and amylase activity of rice. J Plant Nutr Soil Sci 173:300–305 He J, Ren Y, Chen X, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119 Houben D, Sonnet P (2015) Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere. doi:10.1016/j.chemosphere.(2014).12.036 Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874 Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80 Hsu YT, Kao CH (2007a) Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil 291:27–37 Hsu YT, Kao CH (2007b) Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant Soil 298:231–241 Hu Y, Ge Y, Zhang C, Ju T, Cheng W (2009) Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regul 59:51–61 Hu P, Huang J, Ouyang Y, Wu L, Song J, Wang S, Li Z, Han C, Zhou L, Huang Y, Luo Y, Christie P (2013a) Water management affects arsenic and cadmium accumulation in different rice cultivars. Environ Geochem Health 35:767–778 Hu P, Li Z, Yuan C, Ouyang Y, Zhou L, Huang J, Huang Y, Luo Y, Christie P, Wu L (2013b) Effect of water management on cadmium and arsenic accumulation by rice (Oryza sativa L.) with different metal accumulation capacities. J Soils Sediments 13:916–924 Hu L, McBride MB, Cheng H, Wu J, Shi J, Xu J, Wu L (2011) Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environ Res 111:356–361 Hu Y, Norton GJ, Duan G, Huang Y, Liu Y (2014) Effect of selenium fertilization on the accumulation of cadmium and lead in rice plants. Plant Soil 384:131–140 Hu P, Ouyang Y, Wu L, Shen L, Luo Y, Christie P (2015) Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. J Environ Sci 27:225–231 Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci 109:19166–19171 Islam E, Yang XE, He ZL, Mahmood Q (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8:1–13 Islam F, Yasmeen T, Riaz M, Arif MS, Ali S, Raza SH (2014) Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicol Environ Saf 110:143–152 Jallad KN (2015) Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans. Environ Sci Pollut Res 22:15449–15458 Jalloh MA, Chen J, Zhen F, Zhang G (2009) Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J Hazard Mater 162:1081–1085 Juang KW, Ho PC, Yu CH (2012) Short-term effects of compost amendment on the fractionation of cadmium in soil and cadmium accumulation in rice plants. Environ Sci Pollut Res 19:1696–1708 Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T (2010) Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci Plant Nutr 56:839–847 Ke S, Cheng XY, Zhang N, Hu HG, Yan Q, Hou LL, Sun X, Chen ZN (2015) Cadmium contamination of rice from various polluted areas of China and its potential risks to human health. Environ Monit Assess 187:1–11 Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of Silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860 Khaliq A, Ali S, Hameed A, Farooq MA, Farid M, Shakoor MB, Mahmood K, Ishaque W, Rizwan M (2016) Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis and suppressing Ni uptake and oxidative stress. Arch Agron Soil Sci 62:633–647 Khan S, Chao C, Waqas M, Arp HPH, Zhu YG (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632 Khan S, Reid BJ, Li G, Zhu YG (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Int 68:154–161 Khan S, Waqas M, Ding F, Shamshad I, Arp HP, Li G (2015) The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J Hazard Mater 300:243–253 Khaokaew S, Chaney RL, Landrot G, Ginder-Vogel M, Sparks DL (2011) Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions. Environ Sci Technol 45:4249–4255 Khavari-Nejad RA, Najafi F, Rezaei M (2014) The influence of cadmium toxicity on some physiological parameters as affected by iron in rice (Oryza Sativa L.) plant. J Plant Nutr 37:1202–1213 Kibria MG, Osman KT, Ahmed MJ (2006) Cadmium and lead uptake by rice (Oryza sativa L.) grown in three different textured soils. Plant Soil Environ 25:70–77 Kikuchi T, Okazaki M, Kimura SD, Motobayashi T, Baasansuren J, Hattori T, Abe T (2008) Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains: II: Suppression of cadmium uptake and accumulation into rice grains due to application of magnesium oxide materials. J Hazard Mater 154:294–299 Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Lee IJ (2014) Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Boil 14:1–13 Kosolsaksakul P, Farmer JG, Oliver IW, Graham MC (2014) Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environ Pollut 187:153–161 Kukier U, Chaney RL (2002) Growing rice grain with controlled cadmium concentrations. J Plant Nutr 25:1793–1820 Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC, Lim CO, Lee XY, Chung WS (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168 Lee HJ, Abdula SE, Jang DW, Park SH, Yoon UH, Jung YJ, Kan KK, Nou IS, Cho YG (2013) Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep 32:1521–1529 Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan Ltd, London Li J, Xu Y (2015) Immobilization of Cd in a paddy soil using moisture management and amendment. Chemosphere 122:131–136 Li P, Wang XX, Zhang T, Zhou D, Yuanqiu HE (2008) Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil. J Environ Sci 20:449–455 Li P, Wang XX, Zhang TL, Zhou DM, He YQ (2009) Distribution and accumulation of copper and cadmium in soil–rice system as affected by soil amendments. Water Air Soil Pollut 196:29–40 Li B, Wang X, Qi X, Huang L, Ye Z (2012a) Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron, zinc, nickel and manganese. J Environ Sci 24:1790–1798 Li S, Yu J, Zhu M, Zhao F, Luan S (2012b) Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant Cell Environ 35:1998–2013 Li H, Ye X, Geng Z, Zhou H, Guo X, Zhang Y, Zhao H, Wang G (2016) The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J Hazard Mater 304:40–48 Liang X, Han J, Xu Y, Sun Y, Wang L, Tan X (2014) In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite. Geoderma 235:9–18 Lin R, Wang X, Luo Y, Du W, Guo H, Yin D (2007) Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings Triticum aestivum L. Chemosphere 69:89–98 Lin YL, Chao YY, Huang WD, Kao CH (2011) Effect of nitrogen deficiency on antioxidant status and Cd toxicity in rice seedlings. Plant Growth Regul 64:263–273 Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235:343–351 Liu J, Li K, Xu J, Liang J, Lu X, Yang J, Zhu Q (2003a) Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Res 83:271–281 Liu JG, Liang JS, Li KQ, Zhang ZJ, Yu BY, Lu XL, Yang JC, Zhu QS (2003b) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52:1467–1473 Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong MH (2005) Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153 Liu HJ, Zhang JL, Christie P, Zhang FS (2007a) Influence of external zinc and phosphorus supply on Cd uptake by rice (Oryza sativa L.) seedlings with root surface iron plaque. Plant Soil 300:105–115 Liu HJ, Zhang JL, Zhang FS (2007b) Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environ Exp Bot 59:314–320 Liu J, Qian M, Cai G, Yang J, Zhu Q (2007c) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447 Liu J, Qian M, Cai G, Zhu Q, Wong MH (2007d) Variations between rice cultivars in root secretion of organic acids and the relationship with plant cadmium uptake. Environ Geochem Health 29:189–195 Liu W, Yang YS, Zhou Q, Xie L, Li PA, Sun T (2007e) Impact assessment of cadmium contamination on rice Oryza sativa L. seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163 Liu H, Zhang J, Christie P, Zhang F (2008) Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Sci Total Environ 394:361–368 Liu C, Li F, Luo C, Liu X, Wang S, Liu T, Li X (2009) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161:1466–1472 Liu HJ, Zhang JL, Christie P, Zhang FS (2010a) Influence of iron fertilization on cadmium uptake by rice seedlings irrigated with cadmium solution. Commun Soil Sci Plant Anal 41:584–594 Liu J, Cao C, Wong M, Zhang Z, Chai Y (2010b) Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. J Environ Sci 22:1067–1072 Liu CH, Huang WD, Kao CH (2012) The decline in potassium concentration is associated with cadmium toxicity of rice seedlings. Acta Physiol Plant 34:495–502 Liu D, Zhang C, Chen X, Yang Y, Wang S, Li Y, Hu H, Ge Y, Cheng W (2013a) Effects of pH, Fe, and Cd on the uptake of Fe2+ and Cd2+ by rice. Environ Sci Pollut Res 20:8947–8954 Liu J, Ma J, He C, Li X, Zhang W, Xu F, Wang L (2013b) Inhibition of cadmium ion uptake in rice (Oryza sativa L.) cells by a wall‐bound form of silicon. New Phytol 200:691–699 Liu H, Hussain S, Peng S, Huang J, Cui K, Nie L (2014a) Potentially toxic elements concentration in milled rice differ among various planting patterns. Field Crop Res 168:19–26 Liu X, Li L, Bian R, Chen D, Qu J, Kibue GW, Pan G, Zhang X, Zheng J, Zheng J (2014b) Effect of biochar amendment on soil-silicon availability and rice uptake. J Plant Nutr Soil Sci 177:91–96 Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose‐bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa L.) cells. New Phytol. doi:10.1111/nph.13276 Mahar A, Wang P, Li R, Zhang Z (2015) Immobilization of lead and cadmium in contaminated soil using amendments: a review. Pedosphere 25:555–568 Makino T, Luo Y, Wu L, Sakurai Y, Maejima Y, Akahane I, Arao T (2010) Heavy metal pollution of soil and risk alleviation methods based on soil chemistry. Pedologist 53:38–49 Meharg AA, Norton G, Deacon C, Williams P, Adomako EE, Price A, Zhu Y, Li G, Zhao FJ, McGrath S, Villada A, Sommelle A, Mangala P, De Silva CS, Brammer H, Dasgupta T, Islam MR (2013) Variation in rice cadmium related to human exposure. Environ Sci Technol 47:5613–5618 Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, SatohNagasawa N, Watanabe A, Fujimura T, Akagi H (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199 Moreno-Jiménez E, Meharg AA, Smolders E, Manzano R, Becerra D, Sanchez-Llerena J, Albarran A, Lopez-Pinero A (2014) Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium. Sci Total Environ 485:468–473 Mostofa MG, Rahman A, Ansary MMU, Watanabe A, Fujita M, Tran LSP (2015) Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Sci Rep 5:14078. doi:10.1038/srep14078 Nath S, Deb B, Sharma I, Pandey P (2014) Role of cadmium and lead tolerant pseudomonas aeruginosa in seedling germination of rice (Oryza sativa L.). J Environ Anal Toxicol 4:1–4 Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake: growth and photosynthesis of rice plants exposed to low level cadmium. Plant Soil 311:73–86 Nwugo CC, Huerta AJ (2010) The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J Proteome Res 10:518–528 Ok YS, Usman AR, Lee SS, El-Azeem SAA, Choi B, Hashimoto Y, Yang JE (2011) Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere 85:677–682 Ok YS, Chang SX, Gao B, Chung HJ (2015) SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environ Technol Innov. doi:10.1016/j.eti.(2015).08.003 Okazaki M, Kimura SD, Kikuchi T, Igura M, Hattori T, Abe T (2008) Suppressive effects of magnesium oxide materials on cadmium uptake and accumulation into rice grains: I: characteristics of magnesium oxide materials for cadmium sorption. J Hazard Mater 154:287–293 Pan Y, Bonten LT, Koopmans GF, Song J, Luo Y, Temminghoff EJ, Comans RN (2016) Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage. Geoderma 261:59–69 Panda SK, Patra HK (2007) Effect of salicylic acid potentiates cadmium-induced oxidative damage in Oryza sativa L. leaves. Acta Physiol Plant 29:567–575 Panda P, Nath S, Chanu TT, Sharma GD, Panda SK (2011) Cadmium stress-induced oxidative stress and role of nitric oxide in rice (Oryza sativa L.). Acta Physiol Plant 33:1737–1747 Qin DU, Chen MX, Zhou R, Chao ZY, Zhu ZW, Shao GS, Wang GM (2009) Cd toxicity and accumulation in rice plants vary with soil nitrogen status and their genotypic difference can be partly attributed to nitrogen uptake capacity. Rice Sci 16:283–291 Rafiq MT, Aziz R, Yang X, Xiao W, Rafiq MK, Ali B, Li T (2014) Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicol Environ Saf 103:101–107 Rahman A, Mostofa MG, Nahar K, Hasanuzzaman M, Fujita M (2015) Exogenous calcium alleviates cadmium-induced oxidative stress in rice (Oryza sativa L.) seedlings by regulating the antioxidant defense and glyoxalase systems. Braz J Bot. doi:10.1007/s40415-015-0240-0 Rascio N, Dalla Vecchia F, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R (2008) Metal accumulation and damage in rice cv. Vialone nano seedlings exposed to cadmium. Environ Exp Bot 62:267–278 Rehman MZ, Rizwan M, Ghafoor A, Naeem A, Ali S, Sabir M, Qayyum MF (2015) Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environ Sci Pollut Res 22:16897–16906 Rizwan M, Meunier JD, Hélène M, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209–210:326–334 Rizwan M, Ali S, Ibrahim M, Farid M, Adrees M, Bharwana SA, Rehman MZ, Qayyum MF, Abbas F (2015) Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: a review. Environ Sci Pollut Res 22:15416–15431 Rizwan M, Ali S, Qayyum MF, Ibrahim M, Rehman MZ, Abbas T, Ok YS (2016a) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248 Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C (2016b) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23:1414–1427 Rodda MS, Li G, Reid RJ (2011) The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post flowering. Plant Soil 347:105–114 Roychoudhury A, Basu S, Sengupta DN (2012) Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol Plant 34:835–847 Sasaki A, Yamaji N, Ma JF (2014) Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot 65:6013–6021 Sebastian A, Prasad MNV (2013) Cadmium accumulation retard activity of functional components of photo assimilation and growth of rice cultivars amended with vermicompost. Int J Phytoremediation 15:965–978 Sebastian A, Prasad MNV (2014) Vertisol prevent cadmium accumulation in rice: analysis by ecophysiological toxicity markers. Chemosphere 108:85–92 Sebastian A, Prasad MNV (2015a) Operative photo assimilation associated proteome modulations are critical for iron-dependent cadmium tolerance in Oryza sativa L. Protoplasma 252:1375–1386 Sebastian A, Prasad MNV (2015b) Iron-and manganese-assisted cadmium tolerance in Oryza sativa L.: lowering of rhizotoxicity next to functional photosynthesis. Planta 241:1519–1528 Shah K, Nahakpam S (2012) Heat exposure alters the expression of SOD, POD, APX and CAT isozymes and mitigates low cadmium toxicity in seedlings of sensitive and tolerant rice cultivars. Plant Physiol Biochem 57:106–113 Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144 Shao G, Chen M, Wang W, Mou R, Zhang G (2007) Iron nutrition affects cadmium accumulation and toxicity in rice plants. Plant Growth Regul 53:33–42 Shen GM, Zhu C, Du QZ, Shangguan LN (2012a) Ascorbate-glutathione cycle alteration in cadmium sensitive rice mutant cadB1. Rice Sci 19:185–192 Shen GM, Zhu C, Shangguan LN, Du QZ (2012b) The Cd-tolerant rice mutant cadH-5 is a high Cd accumulator and shows enhanced antioxidant activity. J Plant Nutr Soil Sci 175:309–318 Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60 Shi J, Yu X, Zhang M, Lu S, Wu W, Wu J, Xu J (2011) Potential risks of copper, zinc, and cadmium pollution due to pig manure application in a soil–rice system under intensive farming: a case study of Nanhu, China. J Environ Qual 40:1695–1704 Siebers N, Siangliw M, Tongcumpou C (2013) Cadmium uptake and subcellular distribution in rice plants as affected by phosphorus: Soil and hydroponic experiments. J Soil Sci Plant Nutr 13:833–844 Singh RP, Agrawal M (2010) Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates. Ecotoxicol Environ Saf 73:632–641 Singh I, Shah K (2014a) Evidences for structural basis of altered ascorbate peroxidase activity in cadmium-stressed rice plants exposed to jasmonate. BioMetals 27:247–263 Singh I, Shah K (2014b) Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings. Phytochemistry 108:57–66 Singh P, Shah K (2014c) Evidences for reduced metal-uptake and membrane injury upon application of nitric oxide donor in cadmium stressed rice seedlings. Plant Physiol Biochem 83:180–184 Singh I, Shah K (2015) Evidences for suppression of cadmium induced oxidative stress in presence of sulphosalicylic acid in rice seedlings. Plant Growth Regul 76:99–110 Siripornadulsil S, Siripornadulsil W (2013) Cadmium-tolerant bacteria reduce the uptake of cadmium in rice: potential for microbial bioremediation. Ecotoxicol Environ Saf 94:94–103 Song WE, Chen L, Chen SB, Song NN, Li N, Liu B (2014) Variation of cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Int Agric. doi:10.1016/S2095-3119(14)60926-6 Song WE, Chen SB, Liu JF, Li CH, Song NN, Ning LI, Bin LI (2015) Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. J Integ Agri 14:1845–1854 Song XQ, Liu LF, Jiang YJ, Zhang BC, Gao YP, Liu XL, Lin QS, Ling HQ, Zhou YH (2013) Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants. Mol Plant 6:768–780 Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS (2014) Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 251:1047–1065 Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey RS (2015) Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma 252:959–975 Suksabye P, Pimthong A, Dhurakit P, Mekvichitsaeng P, Thiravetyan P (2016) Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil. Environ Sci Pollut Res 23:962–973 Sun Y, Li Z, Guo B, Chu G, Wei C, Liang Y (2008) Arsenic mitigates cadmium toxicity in rice seedlings. Environ Exp Bot 64:264–270 Sun L, Zheng M, Liu H, Peng S, Huang J, Cui K, Nie L (2014) Water management practices affect arsenic and cadmium accumulation in rice grains. Sci World J. doi:10.1155/2014/596438 Sun Y, Li Y, Xu Y, Liang X, Wang L (2015) In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl Clay Sci 105:200–206 Sun Y, Sun G, Xu Y, Liu W, Liang X, Wang L (2016) Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. J Environ Manag 166:204–210 Tripathi DK, Singh VP, Kumar D, Chauhan DK (2012) Rice seedlings under cadmium stress: effect of silicon on growth, cadmium uptake, oxidative stress, antioxidant capacity and root and leaf structures. Chem Ecol 28:281–291 Tsukahara T, Ezaki T, Moriguchi J, Furuki K, Shimbo S, MatsudaInoguchi N, Ikeda M (2003) Rice as the most influential source of cadmium intake among general Japanese population. Sci Total Environ 305:41–51 Ueno D, Kono I, Yokosho K, Ando T, Yano M, Ma JF (2009) A major quantitative trait locus controlling cadmium translocation in rice Oryza sativa. New Phytol 182:644–653 Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010) Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci 107:16500–16505 Uraguchi S, Fujiwara T (2013) Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16:328–334 Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceed Nat Acad Sci 108:20959–20964 Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root to shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688 Uraguchi S, Kamiya T, Clemens S, Fujiwara T (2014) Characterization of OsLCT1, a cadmium transporter from indica rice Oryza sativa. Physiol Plant 151:339–347 Valizadehfard F, Reyhanitabar A, Najafi N, Oustan S (2012) Interactive effects of cadmium and zinc application on their uptake by rice under waterlogged and non-waterlogged conditions. J Plant Physiol Breeding 2:1–12 Wang LJ, Wang YH, Chen Q, Cao WD, Li M, Zhang FS (2000) Silicon induced cadmium tolerance of rice seedlings. J Plant Nutr 23:1397–1406 Wang MY, Chen AK, Wong MH, Qiu RL, Cheng H, Ye ZH (2011) Cadmium accumulation in and tolerance of rice Oryza sativa L. varieties with different rates of radial oxygen loss. Environ Pollut 159:1730–1736 Wang X, Yao H, Wong MH, Ye Z (2013a) Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environ Geochem Health 35:779–788 Wang X, Zhang ZW, Tu SH, Feng WQ, Xu F, Zhu F, Zhang DW, Du JB, Yuan S, Lin HH (2013b) Comparative study of four rice cultivars with different levels of cadmium tolerance. Biologia 68:74–81 Wang Y, Jiang X, Li K, Wu M, Zhang R, Zhang L, Chen G (2014) Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. BioMetals 27:389–401 Wang H, Wang T, Ahmad I (2015a) Involvement of phosphate supplies in different transcriptional regulation pathway of Oryza sativa L’.s antioxidative system in response to arsenite and cadmium stress. Ecotoxicol 24:1259–1268 Wang S, Huang DY, Zhu QH, Zhu HH, Liu SL, Luo ZC, Cao XL, Wang JY, Rao ZX, Shen X (2015b) Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw. Environ Sci Pollut Res 22:2679–2686 Wang S, Wang F, Gao S (2015c) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845 Wang HY, Wen SL, Chen P, Zhang L, Cen K, Sun GX (2016) Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields. Environ Sci Pollut Res 23:3781–3788 Watanabe T, Zhang ZW, Moon CS, Shimbo S, Nakatsuka H, MatsudaInoguchi N, Higashikawa K, Ikeda M (2000) Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1981. Int Arch Occup Environ Health 73:26–34 Wu FB, Dong J, Jia GX, Zheng SJ, Zhang GP (2006) Genotypic difference in the responses of seedling growth and Cd toxicity in rice Oryza sativa L. Agric Sci China 5:68–76 Wu F, Lin DY, Su DC (2011) The effect of planting oilseed rape and compost application on heavy metal forms in soil and Cd and Pb uptake in rice. Agric Sci China 10:267–274 Wu M, Wang PY, Sun LG, Zhang JJ, Yu J, Wang YW, Chen GX (2014) Alleviation of cadmium toxicity by cerium in rice seedlings is related to improved photosynthesis, elevated antioxidant enzymes and decreased oxidative stress. Plant Growth Regul 74:251–260 Wu Z, Zhang C, Yan J, Yue Q, Ge Y (2015) Effects of sulfur supply and hydrogen peroxide pretreatment on the responses by rice under cadmium stress. Plant Growth Regul. doi:10.1007/s10725-015-0064-8 Xiong J, An L, Lu H, Zhu C (2009a) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230:755–765 Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009b) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610 Xu B, Yu S (2013) Root iron plaque formation and characteristics under N2 flushing and its effects on translocation of Zn and Cd in paddy rice seedlings (Oryza sativa L.). Ann Bot 111:1189–1195 Xu W, Li Y, He J, Ma Q, Zhang X, Chen G, Wang H, Zhang H (2010) Cd uptake in rice cultivars treated with organic acids and EDTA. J Environ Sci 22:441–447 Yan YF, Choi DH, Kim DS, Lee BW (2010) Genotypic variation of cadmium accumulation and distribution in rice. J Crop Sci Biotechnol 13:69–73 Yan YF, Lestari P, Lee KJ, Kim MY, Lee SH, Lee BW (2013) Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa L.). Genome 56:227–232 Yang Y, Xiong J, Chen R, Fu G, Chen T, Tao L (2016) Excessive nitrate enhances cadmium (Cd) uptake by up-regulating the expression of OsIRT1 in rice (Oryza sativa). Environ Exp Bot 122:141–149 Yao W, Sun L, Zhou H, Yang F, Mao D, Wang J, Chen L, Zhang G, Dai J, Xiao G, Chen C (2015) Additive, dominant parental effects control the inheritance of grain cadmium accumulation in hybrid rice. Mol Breed. doi:10.1007/s11032-015-0246-0 Ye X, Ma Y, Sun B (2012) Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. J Environ Sci 24:1647–1654 Ye X, Li H, Ma Y, Wu L, Sun B (2014) The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties. J Soils Sediments 14:1407–1416 Yin B, Zhou L, Yin B, Chen L (2016) Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. J Soils Sediments 16:537–546 Yoneyama T, Gosho T, Kato M, Goto S, Hayashi H (2010) Xylem and phloem transport of Cd, Zn and Fe into the grains of rice plants Oryza sativa L. grown in continuously flooded Cd contaminated soil. Soil Sci Plant Nutr 56:445–453 Yu H, Wang J, Fang W, Yuan J, Yang Z (2006) Cadmium accumulation in different rice cultivars and screening for pollution safe cultivars of rice. Sci Total Environ 370:302–309 Yu F, Liu K, Li M, Zhou Z, Deng H, Chen B (2013) Effects of cadmium on enzymatic and nonenzymatic antioxidative defences of rice Oryza sativa L. Int J Phytoremediation 15:513–521 Yu L, Zhu J, Huang Q, Su D, Jiang R, Li H (2014) Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicol Environ Saf 108:287–293 Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang DA, Qi Y (2015) The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J. doi:10.1111/tpj.12929 Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91 Zhan J, Wei S, Niu R, Li Y, Wang S, Zhu J (2013) Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application. Environ Sci Pollut Res 20:2645–2650 Zhang J, Duan GL (2008) Genotypic difference in arsenic and cadmium accumulation by rice seedlings grown in hydroponics. J Plant Nutr 31:2168–2182 Zhang CH, Ying GE (2008) Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress. Rice Sci 15:73–76 Zhang XH, Zhu YG, Chen BD, Lin AJ, Smith SE, Smith FA (2005) Arbuscular mycorrhizal fungi contribute to resistance of upland rice to combined metal contamination of soil. J Plant Nutr 28:2065–2077 Zhang C, Wang L, Nie Q, Zhang W, Zhang F (2008) Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ Exp Bot 62:300–307 Zhang J, Sun W, Li Z, Liang Y, Song A (2009a) Cadmium fate and tolerance in rice cultivars. Agron Sustain Dev 29:483–490 Zhang XH, Lin AJ, Gao YL, Reid RJ, Wong MH, Zhu YG (2009b) Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol Biochem 41:930–935 Zhang L, Chen Z, Zhu C (2012a) Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings. J Environ Sci 24:940–948 Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, Yang L (2012b) Transcriptional profiling in cadmium treated rice seedling roots using suppressive subtractive hybridization. Plant Physiol Biochem 50:79–86 Zhang C, Yin X, Gao K, Ge Y, Cheng W (2013) Non‐protein thiols and glutathione S‐transferase alleviate Cd stress and reduce root‐to‐shoot translocation of Cd in rice. J Plant Nutr Soil Sci 176:626–633 Zhang ZY, Jun M, Shu D, Chen WF (2014) Effect of biochar on relieving cadmium stress and reducing accumulation in super japonica rice. J Int Agr 13:547–553 Zhang A, Bian R, Li L, Wang X, Zhao Y, Hussain Q, Pan G (2015) Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy. Environ Sci Pollut Res. doi:10.1007/s11356-015-4967-8 Zhao X, Ding C, Chen L, Wang S, Wang Q, Ding Y (2012) Comparative proteomic analysis of the effects of nitric oxide on alleviating Cd-induced toxicity in rice (Oryza sativa L.). Plant Omics J 5:604–614 Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013a) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 20:5449–5460 Zhao XF, Chen L, Rehmani MI, Wang QS, Wang SH, Hou PF, Li JH, Ding YF (2013b) Effect of nitric oxide on alleviating cadmium toxicity in rice (Oryza sativa L.). J Integr Agr 12:1540–1550 Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Sun GX (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89:856–862 Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment-a field experiment in Hunan, China. Environ Sci Pollut Res 22:11097–11108 Zhou H, Zhou X, Zeng M, Liao BH, Liu L, Yang WT, We YM, Qiu QY, Wang YJ (2014) Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol Environ Saf 101:226–232 Zhou H, Zeng M, Zhou X, Liao BH, Peng PQ, Hu M, Zhu W, Wu YJ, Zou ZJ (2015) Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars. Plant Soil 386:317–329 Zhu QH, Huang DY, Zhu GX, Ge TD, Liu GS, Zhu HH, Zhang XN (2010) Sepiolite is recommended for the remediation of Cd-contaminated paddy soil. Acta Agric Scand Sect B Soil Plant Sci 60:110–116