Infinite and finite dimensional Hilbert tensors

Linear Algebra and Its Applications - Tập 451 - Trang 1-14 - 2014
Yisheng Song1, Liqun Qi2
1School of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, PR China
2Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Tài liệu tham khảo

Chang, 2013, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438, 4166, 10.1016/j.laa.2013.02.013 Chang, 2008, Perron–Frobenius theorem for nonnegative tensors, Commun. Math. Sci., 6, 507, 10.4310/CMS.2008.v6.n2.a12 Choi, 1983, Tricks for treats with the Hilbert matrix, Amer. Math. Monthly, 90, 301, 10.1080/00029890.1983.11971218 Frazer, 1946, Note on Hilbert's inequality, J. Lond. Math. Soc., 21, 7, 10.1112/jlms/s1-21.1.7 Hilbert, 1894, Ein Beitrag zur Theorie des Legendre'schen Polynoms, Acta Math., 18, 155, 10.1007/BF02418278 Ingham, 1936, A note on Hilbert's inequality, J. Lond. Math. Soc., 11, 237, 10.1112/jlms/s1-11.3.237 Kato, 1957, On the Hilbert matrix, Proc. Amer. Math. Soc., 8, 73, 10.1090/S0002-9939-1957-0083965-4 Lim, 2005, Singular values and eigenvalues of tensors: a variational approach, 129 Magnus, 1950, On the spectrum of Hilbert's matrix, Amer. J. Math., 72, 699, 10.2307/2372284 Qi, 2005, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40, 1302, 10.1016/j.jsc.2005.05.007 Qi, 2013, Symmetric nonnegative tensors and copositive tensors, Linear Algebra Appl., 439, 228, 10.1016/j.laa.2013.03.015 Qi, 2014, Hankel tensors: associated Hankel matrices and Vandermonde decomposition, Commun. Math. Sci. Song, 2014, Positive eigenvalue-eigenvector of nonlinear positive mappings, Front. Math. China, 9, 181, 10.1007/s11464-013-0258-1 Song, 2013, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34, 1581, 10.1137/130909135 Taussky, 1949, A remark concerning the characteristic roots of the finite segments of the Hilbert matrix, Q. J. Math., Oxford Ser., 20, 80, 10.1093/qmath/os-20.1.80 Yang, 2011, Further results for Perron–Frobenius theorem for nonnegative tensors II, SIAM J. Matrix Anal. Appl., 32, 1236, 10.1137/100813671 Yang, 2010, Further results for Perron–Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31, 2517, 10.1137/090778766