Graph Deep Learning Model for Mapping Mineral Prospectivity

Renguang Zuo1, Ying Xu1
1State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agterberg FP (1989) Computer programs for mineral exploration. Science 245:76–81. https://doi.org/10.1126/science.245.4913.76

Ashish V, Noam S, Niki P, Jakob U, Llion J, Aidan NG, Lukasz K, Illia P (2017) Attention is all you need. Adv Neural Inform Process Syst 30:445

Bahdanau D, Cho K, Bengio Y (2016) Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473

Bonham-Carter GF (1994) Geographic information systems for geoscientists: modelling with GIS. Pergamon Press, p 398

Bronstein MM, Bruna J, LeCun Y, Szlam A, Vandergheynst P (2017) Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag 34:18–42. https://doi.org/10.1109/MSP.2017.2693418

Carranza EJM (2008) Geochemical anomaly and mineral prospectivity mapping in GIS: Amsterdam. In: Hale M (ed) Handbook of exploration and environmental geochemistry. Elsevier, New York, p 351

Carranza EJM, Laborte AG (2015) Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: application of random forests algorithm. Ore Geol Rev 71:777–787. https://doi.org/10.1016/j.oregeorev.2014.08.010

Carranza EJM, Hale M (2001) Logistic regression for geologically constrained mapping of gold potential, Baguio district, Philippines. Explor Min Geol 10:165–175. https://doi.org/10.2113/0100165

Carranza EJM, Hale M (2003) Evidential belief functions for data-driven geologically constrained mapping of gold potential, Baguio district, Philippines. Ore Geol Rev 22:117–132. https://doi.org/10.1016/S0169-1368(02)00111-7

Carranza EJM, Hale M (2002) Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Nat Resour Res 11:45–59. https://doi.org/10.1023/A:1014287720379

Carranza EJM, Mangaoang JC, Hale M (1999) Application of mineral exploration models and GIS to generate mineral potential maps as input for optimum land-use planning in the Philippines. Nat Resour Res 8:165–173. https://doi.org/10.1023/A:1021846820568

Chen J, Jiao L, Liu X, Li L, Liu F, Yang S (2022) Automatic graph learning convolutional networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 60:1–16. https://doi.org/10.1109/TGRS.2021.3135084

Cheng Q, Agterberg FP, Ballantyne SB (1994) The separation of geochemical anomalies from background by fractal methods. J Geochem Explor 51:109–130. https://doi.org/10.1016/0375-6742(94)90013-2

Du X, Zheng X, Lu X, Doudkin AA (2021) Multisource remote sensing data classification with graph fusion network. IEEE Trans Geosci Remote Sens 59:10062–10072. https://doi.org/10.1109/TGRS.2020.3047130

Duchi JC, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159. https://doi.org/10.5555/1953048.2021068

Fu S, Liu W, Zhang K, Zhou Y (2021) Example-feature graph convolutional networks for semi-supervised classification. Neurocomputing 461:63–76. https://doi.org/10.1016/j.neucom.2021.07048

Gallicchio C, Micheli A (2010) Graph echo state networks. IEEE Int Joint Conf Neural Netw. https://doi.org/10.1109/IJCNN.2010.5596796

Gori M, Monfardini G, Scarselli F (2005) A new model for learning in graph domains. IEEE Int Joint Conf Neural Netw. https://doi.org/10.1109/IJCNN.2005.1555942

Guan Q, Ren S, Chen L, Yao Y, Hu Y, Wang R, Feng B, Gu L, Chen W (2022) Recognizing multivariate geochemical anomalies related to mineralization by using deep unsupervised graph learning. Nat Resour Res. https://doi.org/10.1007/s11053-022-10088-x

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Paper presented at the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015. https://doi.org/10.48550/arXiv.1502.03167.

Karimpouli S, Tahmasebi P, Saenger EH (2020) Coal cleat/fracture segmentation using convolutional neural networks. Nat Resour Res 29:1675–1685. https://doi.org/10.1007/s11053-019-09536-y

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Adv neural inf proc syst pp 1097–1105. https://doi.org/10.1145/3065386

Kingma D, Ba J (2014) Adam: a method for stochastic optimization. https://doi.org/10.48550/arXiv.1412.6980.

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. arXiv preprint. https://doi.org/10.48550/arXiv.1609.02907

Li C, Qin X, Xu X, Yang D, Wei G (2020a) Scalable graph convolutional networks with fast localized spectral filter for directed graphs. IEEE Access 8:105634–105644. https://doi.org/10.1109/ACCESS.2020a.2999520

Li S, Chen J, Xiang J (2020b) Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data. Neural Comput Appl 32:2037–2053. https://doi.org/10.1007/s00521-019-04341-3

Li S, Chen J, Liu C, Wang Y (2021a) Mineral prospectivity prediction via convolutional neural networks based on geological big data. Journal of Earth Science 32:327–347. https://doi.org/10.1007/s12583-020-1365-z

Li T, Zuo R, Xiong Y, Peng Y (2021b) Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping. Nat Resour Res 30:27–38. https://doi.org/10.1007/s11053-020-09742-z

Li T, Zuo R, Zhao X, Zhao K (2022) Mapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented data. Ore Geol Rev 142:104693. https://doi.org/10.1016/j.oregeorev.2022.104693

Liu Y, Zhang ZL, Liu X, Xia WL, XH, (2021) Deep learning-based image classification for online multi-coal and multi-class sorting. Comput Geosci 157:104922. https://doi.org/10.1016/j.cageo.2021.104922

Lu X, Zheng X, Yuan Y (2017) Remote sensing scene classification by unsupervised representation learning. IEEE Trans Geosci Remote Sens 55:5148–5157. https://doi.org/10.1109/TGRS.2017.2702596

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436. https://doi.org/10.1038/nature14539

Mnih V, Heess N, Graves A, Kavukcuoglu K (2014) Recurrent models of visual attention. Adv Neural Inform Process Syst 27:7789

Porwal A, Carranza EMJ (2015) Introduction to the special issue: GIS-based mineral potential modelling and geological data analyses for mineral exploration. Ore Geol Rev 71:477–483. https://doi.org/10.1016/j.oregeorev.2015.04.017

Rodriguez-Galiano VF, Chica-Olmo M, Chica-Rivas M (2014) Predictive modelling of gold potential with the integration of multisource information based on random forest: a case study on the Rodalquilar area, Southern Spain. Int J Geogr Inf Sci 28:1336–1354. https://doi.org/10.1080/13658816.2014.885527

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2009) Computational capabilities of graph neural networks. IEEE Trans Neural Netw 20:81–102. https://doi.org/10.1109/TNN.2008.2005141

Sperduti A, Starita A (1997) Supervised neural networks for the classification of structures. IEEE Trans Neural Netw 8:714–735. https://doi.org/10.1109/72.572108

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958. https://doi.org/10.5555/2627435.2670313

Sun T, Li H, Wu K, Chen F, Zhu Z, Hu Z (2020) Data-driven predictive modelling of mineral prospectivity using machine learning and deep learning methods: a case study from Southern Jiangxi Province, China. Minerals 10:102. https://doi.org/10.3390/min10020102

Talebi H, Mueller U, Peeters LJM, Otto A, de Caritat P, Tolosana-Delgado P, van den Boogaart KG (2022) Stochastic modelling of mineral exploration targets. Math Geosci 54:593–621. https://doi.org/10.1007/s11004-021-09989-z

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Oplosukhin I (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. ed. by Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R. (Curran Associates, Red Hook, 2017), pp 5998–6008

Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. arXiv preprint. https://doi.org/10.48550/arXiv.1710.10903

Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ (1989) Phoneme recognition using time-delay neural networks. IEEE Trans Acoust Speech Signal Process. https://doi.org/10.1109/29.21701

Wang X, Zuo R, Wang Z (2022) Lithological mapping using a convolutional neural network based on stream sediment geochemical survey data. Nat Resour Res. https://doi.org/10.1007/s11053-022-10096-x

Wang Z, Zuo R (2022) Mineral prospectivity mapping using a joint singularity-based weighting method and long short-term memory network. Comput Geosci 158:104974. https://doi.org/10.1016/j.cageo.2021.104974

Wu L, Cui P, Pei J, Zhao L, Song L (2022) Graph Neural Networks. In: Wu L, Cui P, Pei J, Zhao L (eds) Graph neural networks: foundations, frontiers, and applications. Springer, Singapore. https://doi.org/10.1007/978-981-16-6054-23

Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32:4–24. https://doi.org/10.1109/TNNLS.2020.2978386

Xiong Y, Zuo R, Carranza EJM (2018) Mapping mineral prospectivity through big data analytics and a deep learning algorithm. Ore Geol Rev 102:811–817. https://doi.org/10.1016/j.oregeorev.2018.10.006

Yang N, Zhang Z, Yang J, Hong Z (2022) Applications of data augmentation in mineral prospectivity prediction based on convolutional neural networks. Comput Geosci 161:105075. https://doi.org/10.1016/j.cageo.2022.105075

Yang N, Zhang Z, Yang J, Hong Z, Shi S (2021) A convolutional neural network of GoogLeNet applied in mineral prospectivity prediction based on multi-source geoinformation. Nat Resour Res 30:3905–3923. https://doi.org/10.1007/s11053-021-09934-1

Yin B, Zuo R, Xiong Y (2022) Mineral prospectivity mapping via gated recurrent unit model. Nat Resour Res 31:2065–2079. https://doi.org/10.1007/s11053-021-09979-2

Zhang S, Carranza EJM, Wei H, Xiao K, Yang F, Xiang J, Zhang S, Xu Y (2021) Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network. Nat Resour Res 30:1011–1031. https://doi.org/10.1007/s11053-020-09789-y

Zhang S, Tong H, Xu J, Maciejewski R (2019) Graph convolutional networks: a comprehensive review. Comput Soc Netw 6:11. https://doi.org/10.1186/s40649-019-0069-y

Zuo R (2020) Geodata science-based mineral prospectivity mapping: a review. Nat Resour Res 29:3415–3424. https://doi.org/10.1007/s11053-020-09700-9

Zuo R, Wang J (2020) ArcFractal: an ArcGIS add–in for processing geoscience data using fractal/multifractal models. Nat Resour Res 29:3–12. https://doi.org/10.1007/s11053-019-09513-5

Zuo R, Luo Z, Xiong Y, Yin B (2022) A geologically constrained variational autoencoder for mineral prospectivity mapping. Nat Resour Res 31:1121–1133. https://doi.org/10.1007/s11053-022-10050-x