RADX Promotes Genome Stability and Modulates Chemosensitivity by Regulating RAD51 at Replication Forks
Tài liệu tham khảo
Ball, 2005, ATRIP binding to replication protein A-single-stranded DNA promotes ATR-ATRIP localization but is dispensable for Chk1 phosphorylation, Mol. Biol. Cell, 16, 2372, 10.1091/mbc.e04-11-1006
Bansbach, 2009, The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks, Genes Dev., 23, 2405, 10.1101/gad.1839909
Bass, 2016, ETAA1 acts at stalled replication forks to maintain genome integrity, Nat. Cell Biol., 18, 1185, 10.1038/ncb3415
Bétous, 2012, SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication, Genes Dev., 26, 151, 10.1101/gad.178459.111
Bétous, 2013, Substrate-selective repair and restart of replication forks by DNA translocases, Cell Rep., 3, 1958, 10.1016/j.celrep.2013.05.002
Bhat, 2015, High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling, J. Biol. Chem., 290, 4110, 10.1074/jbc.M114.627083
Budke, 2016, Recent Developments Using Small Molecules to Target RAD51: How to Best Modulate RAD51 for Anticancer Therapy?, ChemMedChem, 11, 2468, 10.1002/cmdc.201600426
Chow, 2004, RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli, J. Biol. Chem., 279, 3492, 10.1074/jbc.M311012200
Ciccia, 2009, The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart, Genes Dev., 23, 2415, 10.1101/gad.1832309
Ciccia, 2012, Polyubiquitinated PCNA recruits the ZRANB3 translocase to maintain genomic integrity after replication stress, Mol. Cell, 47, 396, 10.1016/j.molcel.2012.05.024
Couch, 2014, Fork reversal, too much of a good thing, Cell Cycle, 13, 1049, 10.4161/cc.28212
Couch, 2013, ATR phosphorylates SMARCAL1 to prevent replication fork collapse, Genes Dev., 27, 1610, 10.1101/gad.214080.113
Courcelle, 1997, recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli, Proc. Natl. Acad. Sci. USA, 94, 3714, 10.1073/pnas.94.8.3714
Cox, 2007, Regulation of bacterial RecA protein function, Crit. Rev. Biochem. Mol. Biol., 42, 41, 10.1080/10409230701260258
Davies, 2007, Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats, Nat. Struct. Mol. Biol., 14, 475, 10.1038/nsmb1251
De Lano, W.L. (2002). The PyMOL Molecular Graphics System. Version 0.99rc6 Schrödinger, LLC, De Lano Scientific, San Carlos.
Ding, 2016, Synthetic viability by BRCA2 and PARP1/ARTD1 deficiencies, Nat. Commun., 7, 12425, 10.1038/ncomms12425
Drees, 2004, A RecA filament capping mechanism for RecX protein, Mol. Cell, 15, 789, 10.1016/j.molcel.2004.08.026
Dungrawala, 2015, The replication checkpoint prevents two types of fork collapse without regulating replisome stability, Mol. Cell, 59, 998, 10.1016/j.molcel.2015.07.030
Duursma, 2013, A role for the MRN complex in ATR activation via TOPBP1 recruitment, Mol. Cell, 50, 116, 10.1016/j.molcel.2013.03.006
Edwards, 2008, Resistance to therapy caused by intragenic deletion in BRCA2, Nature, 451, 1111, 10.1038/nature06548
Esashi, 2005, CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair, Nature, 434, 598, 10.1038/nature03404
Eswar, 2007, Comparative protein structure modeling using Modeller, Curr. Protoc. Protein Sci., Chapter 2
Flynn, 2010, Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians, Crit. Rev. Biochem. Mol. Biol., 45, 266, 10.3109/10409238.2010.488216
German, 2001, Analysis of sister-chromatid exchanges, Curr. Protoc. Hum. Genet., Chapter 8, 10.1002/0471142905.hg0806s02
Guillemette, 2015, Resistance to therapy in BRCA2 mutant cells due to loss of the nucleosome remodeling factor CHD4, Genes Dev., 29, 489, 10.1101/gad.256214.114
Gunn, 2012, I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks, Methods Mol. Biol., 920, 379, 10.1007/978-1-61779-998-3_27
Haahr, 2016, Activation of the ATR kinase by the RPA-binding protein ETAA1, Nat. Cell Biol., 18, 1196, 10.1038/ncb3422
Hartlerode, 2009, Mechanisms of double-strand break repair in somatic mammalian cells, Biochem. J., 423, 157, 10.1042/BJ20090942
Hashimoto, 2010, Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis, Nat. Struct. Mol. Biol., 17, 1305, 10.1038/nsmb.1927
Horii, 1968, Degradation of the DNA of Escherichia coli K12 rec- (jc1569b) after irradiation with ultraviolet light, Photochem. Photobiol., 8, 93, 10.1111/j.1751-1097.1968.tb05850.x
Källberg, 2012, Template-based protein structure modeling using the RaptorX web server, Nat. Protoc., 7, 1511, 10.1038/nprot.2012.085
Kass, 2016, When genome maintenance goes badly awry, Mol. Cell, 62, 777, 10.1016/j.molcel.2016.05.021
Klein, 2008, The consequences of Rad51 overexpression for normal and tumor cells, DNA Repair (Amst.), 7, 686, 10.1016/j.dnarep.2007.12.008
Kolinjivadi, 2017, Moonlighting at replication forks—a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51, FEBS Lett., 591, 1083, 10.1002/1873-3468.12556
Kowalczykowski, 2015, An overview of the molecular mechanisms of recombinational DNA repair, Cold Spring Harb. Perspect. Biol., 7, 7, 10.1101/cshperspect.a016410
Kuznetsov, 2008, Mouse embryonic stem cell-based functional assay to evaluate mutations in BRCA2, Nat. Med., 14, 875, 10.1038/nm.1719
Larsen, 2013, RecQ helicases: conserved guardians of genomic integrity, Adv. Exp. Med. Biol., 767, 161, 10.1007/978-1-4614-5037-5_8
Lee, 2013, ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin, J. Cell Biol., 200, 31, 10.1083/jcb.201206084
Lord, 2012, The DNA damage response and cancer therapy, Nature, 481, 287, 10.1038/nature10760
Lord, 2015, Synthetic lethality and cancer therapy: lessons learned from the development of PARP inhibitors, Annu. Rev. Med., 66, 455, 10.1146/annurev-med-050913-022545
Mason, 2014, The RAD51-stimulatory compound RS-1 can exploit the RAD51 overexpression that exists in cancer cells and tumors, Cancer Res., 74, 3546, 10.1158/0008-5472.CAN-13-3220
Norquist, 2011, Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas, J. Clin. Oncol., 29, 3008, 10.1200/JCO.2010.34.2980
O’Connor, 2015, Targeting the DNA damage response in cancer, Mol. Cell, 60, 547, 10.1016/j.molcel.2015.10.040
Oakley, 2010, Replication protein A: directing traffic at the intersection of replication and repair, Front. Biosci. (Landmark Ed.), 15, 883, 10.2741/3652
Pagès, 2003, recX, a new SOS gene that is co-transcribed with the recA gene in Escherichia coli, DNA Repair (Amst.), 2, 273, 10.1016/S1568-7864(02)00217-3
Pierce, 1999, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev., 13, 2633, 10.1101/gad.13.20.2633
Quiros, 2011, Rad51 and BRCA2—new molecular targets for sensitizing glioma cells to alkylating anticancer drugs, PLoS ONE, 6, e27183, 10.1371/journal.pone.0027183
Ran, 2013, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc., 8, 2281, 10.1038/nprot.2013.143
Ray Chaudhuri, 2012, Topoisomerase I poisoning results in PARP-mediated replication fork reversal, Nat. Struct. Mol. Biol., 19, 417, 10.1038/nsmb.2258
Ray Chaudhuri, 2016, Replication fork stability confers chemoresistance in BRCA-deficient cells, Nature, 535, 382, 10.1038/nature18325
Richard, 2009, Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis, Crit. Rev. Biochem. Mol. Biol., 44, 98, 10.1080/10409230902849180
Richardson, 1998, Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations, Genes Dev., 12, 3831, 10.1101/gad.12.24.3831
Richardson, 2004, Rad51 overexpression promotes alternative double-strand break repair pathways and genome instability, Oncogene, 23, 546, 10.1038/sj.onc.1207098
Robu, 2001, RecA protein promotes the regression of stalled replication forks in vitro, Proc. Natl. Acad. Sci. USA, 98, 8211, 10.1073/pnas.131022698
Sakai, 2008, Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers, Nature, 451, 1116, 10.1038/nature06633
Sarbajna, 2014, Holliday junction processing enzymes as guardians of genome stability, Trends Biochem. Sci., 39, 409, 10.1016/j.tibs.2014.07.003
Satta, 1979, Degradation of Escherichia coli DNA: evidence for limitation in vivo by protein X, the recA gene product, Mol. Gen. Genet., 168, 69, 10.1007/BF00267935
Schlacher, 2011, Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11, Cell, 145, 529, 10.1016/j.cell.2011.03.041
Schlacher, 2012, A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2, Cancer Cell, 22, 106, 10.1016/j.ccr.2012.05.015
Sogo, 2002, Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects, Science, 297, 599, 10.1126/science.1074023
Stark, 2004, Genetic steps of mammalian homologous repair with distinct mutagenic consequences, Mol. Cell. Biol., 24, 9305, 10.1128/MCB.24.21.9305-9316.2004
Stohl, 2003, Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo, J. Biol. Chem., 278, 2278, 10.1074/jbc.M210496200
Symington, 2014, End resection at double-strand breaks: mechanism and regulation, Cold Spring Harb. Perspect. Biol., 1, 6
Tarsounas, 2003, BRCA2-dependent and independent formation of RAD51 nuclear foci, Oncogene, 22, 1115, 10.1038/sj.onc.1206263
Tennstedt, 2013, RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma, Int. J. Cancer, 132, 2118, 10.1002/ijc.27907
Toledo, 2013, ATR prohibits replication catastrophe by preventing global exhaustion of RPA, Cell, 155, 1088, 10.1016/j.cell.2013.10.043
Venkatesh, 2002, RecX protein abrogates ATP hydrolysis and strand exchange promoted by RecA: insights into negative regulation of homologous recombination, Proc. Natl. Acad. Sci. USA, 99, 12091, 10.1073/pnas.192178999
Vierling, 2000, Transcriptional and mutational analyses of the Streptomyces lividans recX gene and its interference with RecA activity, J. Bacteriol., 182, 4005, 10.1128/JB.182.14.4005-4011.2000
Willis, 2014, BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks, Nature, 510, 556, 10.1038/nature13295
Xia, 2006, Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2, Mol. Cell, 22, 719, 10.1016/j.molcel.2006.05.022
Xu, 2008, The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling, Mol. Cell. Biol., 28, 7345, 10.1128/MCB.01079-08
Yuan, 2009, The annealing helicase HARP protects stalled replication forks, Genes Dev., 23, 2394, 10.1101/gad.1836409
Yusufzai, 2009, The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA, Genes Dev., 23, 2400, 10.1101/gad.1831509
Zellweger, 2015, Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells, J. Cell Biol., 208, 563, 10.1083/jcb.201406099
Zou, 2017, DNA replication checkpoint: new ATR activator identified, Curr. Biol., 27, R33, 10.1016/j.cub.2016.11.025
Zou, 2003, Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes, Science, 300, 1542, 10.1126/science.1083430