Enhancement of non-contact friction between metal surfaces induced by the electrical double layer
Tài liệu tham khảo
Stipe, 2001, Noncontact friction and force fluctuations between closely spaced bodies, Phys. Rev. Lett., 87, 096801, 10.1103/PhysRevLett.87.096801
Kisiel, 2011, Suppression of electronic friction on nb films inthe superconducting state, Nat. Mater., 10, 119, 10.1038/nmat2936
Langer, 2013, Ernst meyer, giant frictional dissipation peaks andcharge-density-wave slips at the nbse2 surface, Nat. Mater., 13, 173, 10.1038/nmat3836
Volokitin, 2007, Near field radiative heat transfer and noncontact friction, Rev. Mod. Phys., 79, 1291, 10.1103/RevModPhys.79.1291
Kisiel, 2015, Non-contact Friction
I. Volokitin, 2017, Electromagnetic Fluctuations at the Nanoscale
Volokitin, 1999, Theory of friction: the contribution from a fluctuating electromagnetic field, J. Phys.: Condens. Matter, 11, 345
Volokitin, 2008, Theory of the interaction forces and the radiative heat transfer between moving bodies, Phys. Rev. B, 78, 155437, 10.1103/PhysRevB.78.155437
Rytov, 1953
Levin, 1967
Rytov, 1987
Pendry, 1997, Shearing the vacuum - quantum friction, J. Phys.: Condens. Matter, 9, 10301
I. Volokitin, 2001, The frictional drag force between quantum wells mediated by a fluctuating electromagnetic field, J. Phys.: Condens. Matter, 83, 859
Volokitin, 2013, Influence of electric current on the casimir forces between graphene sheets, EPL, 103, 24002, 10.1209/0295-5075/103/24002
I. Volokitin, 2017, Casimir friction and near-field radiative heat transfer in graphene structures, Z. Naturforsch. A, 72, 171, 10.1515/zna-2016-0367
I. Volokitin, 2011, Quantum friction, Phys. Rev. Lett., 106, 094502, 10.1103/PhysRevLett.106.094502
I. Volokitin, 2016, Casimir frictional drag force between a sio2 tip and a graphene-covered sio2 substrate, Phys. Rev. B, 94, 235450, 10.1103/PhysRevB.94.235450
I. Volokitin, 2016, Casimir friction force between a sio2 probe and a graphene-coated sio2 substrate, JETP Lett., 104, 504, 10.1134/S0021364016190139
Volokitin, 2005, Adsorbate-induced enhancement of electrostatic noncontact friction, Phys. Rev. Lett., 94, 086104, 10.1103/PhysRevLett.94.086104
Volokitin, 2006, Enhancement of noncontact friction between closely spaced bodies by two-dimensional systems, Phys. Rev. B, 73, 165423, 10.1103/PhysRevB.73.165423
Volokitin, 2003, Resonant photon tunneling enhancement of the van der waals friction, Phys. Rev. Lett., 91, 106101, 10.1103/PhysRevLett.91.106101
Kang, 2014, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrochim. Acta, 115, 587, 10.1016/j.electacta.2013.11.002
Volokitin, 2021, Electric double layer effect in an extreme near-field heat transfer between metal surfaces, Phys. Rev. B, 103, 10.1103/PhysRevB.103.L041403
Volokitin, 2019, Effect of an electric field in the heat transfer between metals in the extreme near field, JETP Lett., 109, 749, 10.1134/S002136401911016X
Persson, 2001, Theory of rubber friction and contact mechanics, J. Chem. Phys., 115, 3840, 10.1063/1.1388626
Volokitin, 2020, Contribution of the acoustic waves to near-field heat transfer, J. Phys.: Condens. Matter, 32, 215001
Persson, 2011, Phononic heat transfer across an interface: thermal boundary resistance, J. Phys. Condens. Matter, 23, 045009, 10.1088/0953-8984/23/4/045009
Landau, 1980
I. Volokitin, 2002, Dissipative van der waals interaction between a small particle and a metal surface, Phys. Rev. B, 65, 115419, 10.1103/PhysRevB.65.115419
Pinchuk, 2015, Size-dependent hamaker constants for silver and gold nanoparticles, proc. SPIE 9549, Phys. Chem. Interface Nanomater. XIV
Chapuis, 2008, Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces, Phys. Rev., 77, 035431, 10.1103/PhysRevB.77.035431
Pendry, 2016, Phonon-assisted heat transfer between vacuum-separated surfaces, Phys. Rev. B, 94, 075414, 10.1103/PhysRevB.94.075414
Parsegian, 2006
