Chirality effects on channel modeling for THz-band wireless communications in LoS/NLoS propagation
Tài liệu tham khảo
Piesiewicz, 2007, Short-range ultra-broadband terahertz communications: Concepts and perspectives, IEEE Antennas Propag. Mag., 49, 24, 10.1109/MAP.2007.4455844
Kurner, 2014, Towards THz communications - status in research, standardization and regulation, J. Infrared Millim. Terahertz Waves, 35, 53, 10.1007/s10762-013-0014-3
A. Moldovan, M. Ruder, I. Akyildiz, W. Gerstacker, LOS and NLOS channel modeling for terahertz wireless communication with scattered rays, in: Globecom Workshops (GC Wkshps), 2014, 2014, pp. 388–392. http://dx.doi.org/10.1109/GLOCOMW.2014.7063462.
Han, 2015, Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band, IEEE Trans. Wireless Commun., 14, 2402, 10.1109/TWC.2014.2386335
Jornet, 2011, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band, IEEE Trans. Wireless Commun., 10, 3211, 10.1109/TWC.2011.081011.100545
Llatser, 2015, Time- and frequency-domain analysis of molecular absorption in short-range terahertz communications, IEEE Antennas Wirel. Propag. Lett., 14, 350, 10.1109/LAWP.2014.2362194
Piro, 2015, Terahertz communications in human tissues at the nanoscale for healthcare applications, IEEE Trans. Nanotechnol., 14, 404, 10.1109/TNANO.2015.2415557
P. Boronin, D. Moltchanov, Y. Koucheryavy, A molecular noise model for THz channels, in: Communications, ICC, 2015 IEEE International Conference on, 2015, pp. 1286–1291. http://dx.doi.org/10.1109/ICC.2015.7248500.
Kokkoniemi, 2015, A discussion on molecular absorption noise in the terahertz band, Nano Commun. Netw.
F. Sheikh, M. El-Hadidy, T. Kaiser, Terahertz band: Indoor ray-tracing channel model considering atmospheric attenuation, in: Antennas and Propagation USNC/URSI National Radio Science Meeting, 2015 IEEE International Symposium on, 2015, pp. 1782–1783. http://dx.doi.org/10.1109/APS.2015.7305280.
Piesiewicz, 2007, Scattering analysis for the modeling of THz communication systems, IEEE Trans. Antennas and Propagation, 55, 3002, 10.1109/TAP.2007.908559
Kokkoniemi, 2015, Frequency and time domain channel models for nanonetworks in terahertz band, IEEE Trans. Antennas and Propagation, 63, 678, 10.1109/TAP.2014.2373371
Sihvola, 2007, Metamaterials in electromagnetics, Metamaterials, 1, 2, 10.1016/j.metmat.2007.02.003
Kenanakis, 2015, Controlling THz and far-IR waves with chiral and bianisotropic metamaterials, EPJ Appl. Metamater., 2, 15, 10.1051/epjam/2015019
Lindman, 1914, Om en genom ett isotropt system av spiralformiga resonatorer alstrad rotationspolarisation av elektromagnetiska vagorna, Ofversigt af Finska Vetenskaps-Societetens forhandlingar, A. Matematik och Naturvetenskaper, LVII, 1
N. Engheta, Chiral materials and chiral electrodynamics: Background & basic physical principles, in: Special Workshop on Chiral and Complex Materials Progress in Electromagnetics Research Symposium, PIERS’91, Cambridge, Massachusetts, 1991.
Lakhtakia, 1991, Recent contributions to classical electromagnetic theory of chiral media: what next?, Specul. Sci. Technol., 14, 2
Lindell, 1994
Fang, 2013, Dual-band terahertz chiral metamaterial with giant optical activity and negative refractive index based on cross-wire structure, Prog. Electromagnetics Res. M, 31, 59, 10.2528/PIERM13042409
Zhou, 2012, Terahertz chiral metamaterials with giant and dynamically tunable optical activity, Phys. Rev. B, 86, 10.1103/PhysRevB.86.035448
Kong, 1986
Kenanakis, 2014, Optically controllable THz chiral metamaterials, Opt. Express, 22, 12149, 10.1364/OE.22.012149
Zhao, 2010, Chiral Metamaterials: retrieval of the effective parameters with and without substrate, Opt. Express, 18
Kenanakis, 2012, Flexible chiral metamaterials in the terahertz regime: a comparative study of various designs, Opt. Mater. Express, 2, 1702, 10.1364/OME.2.001702