A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates

International Journal of Plasticity - Tập 27 - Trang 1-24 - 2011
Ryan A. Austin1, David L. McDowell1,2
1Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30332-0405, USA
2School of Materials Science & Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245, USA

Tài liệu tham khảo

Armstrong, 2007, Dislocation mechanics of shock-induced plasticity, Metall. Mater. Trans. A, 38A, 2605, 10.1007/s11661-007-9142-5 Armstrong, 2009, Dislocation mechanics of copper and iron in high rate deformation tests, J. Appl. Phys., 105, 1, 10.1063/1.3067764 Asay, 2008, Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression, J. Appl. Phys., 103, 083514, 10.1063/1.2902855 Asay, 1981 Barton, 2005, Crystal level continuum modelling of phase transformations: the alpha <->epsilon transformation in iron, Modell. Simul. Mater. Sci. Eng., 13, 707, 10.1088/0965-0393/13/5/006 Barton, 2009, Defect evolution and pore collapse in crystalline energetic materials, Modell. Simul. Mater. Sci. Eng., 17, 035003, 10.1088/0965-0393/17/3/035003 Basinski, 1959, Thermally activated glide in face-centered cubic metals and its application to the theory of strain hardening, Philos. Mag., 4, 393, 10.1080/14786435908233412 Bringa, 2006, Shock deformation of face-centered-cubic metals on subnanosecond timescales, Nat. Mater., 5, 805, 10.1038/nmat1735 Capolungo, 2007, Dislocation nucleation from bicrystal interfaces and grain boundary ledges: relationship to nanocrystalline deformation, J. Mech. Phys. Solids, 55, 2300, 10.1016/j.jmps.2007.04.001 Clifton, 1970, On the analysis of elastic/visco-plastic waves of finite uniaxial strain, 73 Conrad, 1970, The athermal component of flow stress in crystalline solids, Mater. Sci. Eng., 6, 265, 10.1016/0025-5416(70)90054-6 Davison, 1979, Shock compression of solids, Phys. Rep., 55, 255, 10.1016/0370-1573(79)90026-7 Douin, 2001, Stress field around precipitates: direct measurement and relation with the behavior of dislocations, Mater. Sci. Eng. A - Struct., 319, 270, 10.1016/S0921-5093(01)01103-0 Estrin, 1996 Estrin, 1986, Local strain-hardening and nonuniformity of plastic deformation, Acta Metall., 34, 2455, 10.1016/0001-6160(86)90148-3 Farkas, 2005, Plastic deformation mechanisms in nanocrystalline columnar grain structures, Mater. Sci. Eng. A - Struct., 412, 316, 10.1016/j.msea.2005.09.043 Follansbee, 1988, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta Metall., 36, 81, 10.1016/0001-6160(88)90030-2 Frutschy, 1998, High-temperature pressure-shear plate impact experiments on OFHC copper, J. Mech. Phys. Solids, 46, 1723, 10.1016/S0022-5096(98)00055-6 Gupta, 1975, Dislocation mechanisms for stress relaxation in shocked LiF, J. Appl. Phys., 46, 532, 10.1063/1.321678 Hirth, 1968 Huang, 2005, Compressive strength measurements in aluminum for shock compression over the stress range of 4–22GPa, J. Appl. Phys., 98, 033524, 10.1063/1.2001729 Huang, 2007, Reshock and release response of aluminum single crystal, J. Appl. Phys., 101, 063550, 10.1063/1.2655571 Huang, 1985, 63 Hull, 2001 Johnson, 1969, Dislocation dynamics and steady plastic wave profiles in 6061-T6 Aluminum, J. Appl. Phys., 40, 4321, 10.1063/1.1657194 Johnston, 1960, Dislocation multiplication in lithium–fluoride crystals, J. Appl. Phys., 31, 632, 10.1063/1.1735655 Klepaczko, 1975, Thermally activated flow and strain rate history effects for some polycrystalline fcc metals, Mat. Sci. Eng., 18, 121, 10.1016/0025-5416(75)90078-6 Kocks, 1966, A statistical theory of flow stress and work-hardening, Philos. Mag., 13, 541, 10.1080/14786436608212647 Kocks, 1975, Thermodynamics and kinetics of slip, Prog. Mater. Sci., 19, 1 Kocks, 2003, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci., 48, 171, 10.1016/S0079-6425(02)00003-8 Koppenaal, 1964, The effect of prestressing on the strength of neutron-irradiated copper single crystals, Appl. Phys. Lett., 4, 59, 10.1063/1.1753962 Kuhlmann-Wilsdorf, 1999, The theory of dislocation-based crystal plasticity, Philos. Mag. A, 79, 955, 10.1080/01418619908210342 Kurzydlowski, 1982, Finite-element analysis of stress-concentrations on the grain-boundary in anisotropic bicrystals, Res. Mech., 5, 89 Leibfried, 1950, Uber den einfluss thermisch angeregter schallwellen auf die plastische deformation, Z. Phys., 127, 344, 10.1007/BF01329831 Li, C.H., 1981. Ph.D. thesis, Brown University. Marsh, 1980 Mecking, 1981, Kinetics of flow and strain-hardening, Acta Metall., 29, 1865, 10.1016/0001-6160(81)90112-7 Meyers, 2003, Laser-induced shock compression of monocrystalline copper: characterization and analysis, Acta Mater., 51, 1211, 10.1016/S1359-6454(02)00420-2 Meyers, 2008, Deformation substructures and their transitions in laser shock-compressed copper–aluminum alloys, Metall. Mater. Trans. A, 39A, 304, 10.1007/s11661-007-9359-3 Millett, 2008, The behavior of Ni, Ni–60Co, and Ni3Al during one-dimensional shock loading, Metall. Mater. Trans. A, 39A, 322, 10.1007/s11661-007-9427-8 Molinari, 2004, Fundamental structure of steady plastic shock waves in metals, J. Appl. Phys., 95, 1718, 10.1063/1.1640452 Mughrabi, 1986, A two-parameter description of heterogeneous dislocation distributions in deformed metal crystals, Mater. Sci. Eng., 85, 15, 10.1016/0025-5416(87)90463-0 Murr, 1978, Work hardening and the pressure dependence of dislocation density and arrangements in shock loaded nickel and copper, Scripta Metall. Mater., 12, 201, 10.1016/0036-9748(78)90164-3 Murr, 1981, 60 Murr, L.E., 1988. Examination of microstructural development by shock waves in condensed matter: theoretical and practical consequences. In: Schmidt, S.C., Holmes, N.C. (Eds.), Shock Waves in Condensed Matter – 1987, pp. 315–320. Murr, 1978, Experimental and theoretical observations on the relationship between dislocation cell size, dislocation density, residual hardness, peak pressure and pulse duration in shock-loaded nickel, Acta Metall., 26, 847, 10.1016/0001-6160(78)90034-2 Murr, 1997, Shock-induced deformation twinning in tantalum, Acta Mater., 45, 157, 10.1016/S1359-6454(96)00145-0 Myhr, 2001, Modelling of the age hardening behaviour of Al–Mg–Si alloys, Acta Mater., 49, 65, 10.1016/S1359-6454(00)00301-3 Nadgornyi, 1988, Dislocation dynamics and mechanical properties of crystals, Prog. Mater. Sci., 31, 1, 10.1016/0079-6425(88)90005-9 Nes, 1998, Modelling of work hardening and stress saturation in fcc metals, Prog. Mater. Sci., 41, 129, 10.1016/S0079-6425(97)00032-7 Polmear, 2006 Preston, 2003, Model of plastic deformation for extreme loading conditions, J. Appl. Phys., 93, 211, 10.1063/1.1524706 Remington, 2006, Material dynamics under extreme conditions of pressure and strain rate, Mater. Sci. Tech., 22, 474, 10.1179/174328406X91069 Roters, 2000, Work hardening in heterogeneous alloys – a microstructural approach based on three internal state variables, Acta Mater., 48, 4181, 10.1016/S1359-6454(00)00289-5 Seeger, 1954, The temperature dependence of the critical shear stress and of work-hardening of metal crystals, Philos. Mag., 45, 771, 10.1080/14786440708520489 Seeger, 1956, On the theory of the low-temperature internal friction peak observed in metals, Philos. Mag., 1, 651, 10.1080/14786435608244000 Shehadeh, 2006, Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations, Appl. Phys. Lett., 89, 171918, 10.1063/1.2364853 Spearot, 2007, Dislocation nucleation from bicrystal interfaces with dissociated structure, Int. J. Plasticity, 23, 143, 10.1016/j.ijplas.2006.03.008 Steinberg, 1980, A constitutive model for metals applicable at high-strain rate, J. Appl. Phys., 51, 1498, 10.1063/1.327799 Swegle, 1985, Shock viscosity and the prediction of shock rise times, J. Appl. Phys., 58, 692, 10.1063/1.336184 Taylor, 1965, Dislocation dynamics and dynamic yielding, J. Appl. Phys., 36, 3146, 10.1063/1.1702940 Tong, 1992, Pressure-shear impact investigation of strain rate history effects in oxygen-free high-conductivity copper, J. Mech. Phys. Solids, 40, 1251, 10.1016/0022-5096(92)90015-T Tschopp, 2008, Grain boundary dislocation sources in nanocrystalline copper, Scripta Mater., 58, 299, 10.1016/j.scriptamat.2007.10.010 Tschopp, 2008, Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading, J. Mech. Phys. Solids, 56, 1806, 10.1016/j.jmps.2007.11.012 Van Swygenhoven, 2006, Nucleation and propagation of dislocations in nanocrystalline fcc metals, Acta Mater., 54, 1975, 10.1016/j.actamat.2005.12.026 Varin, 1987, Analytical treatment of grain-boundary sources for dislocations, Mater. Sci. Eng., 85, 115, 10.1016/0025-5416(87)90473-3 Vogler, 2006, Strength behavior of materials at high pressures, Int. J. Impact Eng., 33, 812, 10.1016/j.ijimpeng.2006.09.069 Wallace, 1980, Flow process of weak shock waves, Phys. Rev. B, 22, 1487, 10.1103/PhysRevB.22.1487 Wallace, 1980, Irreversible thermodynamics of flow in solids, Phys. Rev. B, 22, 1477, 10.1103/PhysRevB.22.1477 Wallace, 1981, Irreversible thermodynamics of overdriven shocks in solids, Phys. Rev. B, 24, 5597, 10.1103/PhysRevB.24.5597 Wang, 2009, Plastic anisotropy in fcc single crystals in high rate deformation, Int. J. Plasticity, 25, 26, 10.1016/j.ijplas.2008.01.006 Winter, 2008, Simulations of embedded lateral stress gauge profiles in shocked targets, J. Phys. D Appl. Phys., 41 Wolfer, W.G., 1999. Phonon Drag on Dislocations at High Pressures. Lawrence Livermore National Laboratory, UCRL-ID-136221. Xu, 2000, Homogeneous nucleation of dislocation loops under stress in perfect crystals, Philos. Mag. Lett., 80, 605, 10.1080/09500830050134318 Zander, 2008, One parameter model for strength properties of hardenable aluminium alloys, Mater. Des., 29, 1540, 10.1016/j.matdes.2008.02.001 Zhu, 2008, Temperature and strain-rate dependence of surface dislocation nucleation, Phys. Rev. Lett., 100, 025502, 10.1103/PhysRevLett.100.025502 Zhu, 2008, Solution strengthening and age hardening capability of Al–Mg–Mn alloys with small additions of Cu, Mater. Sci. Eng. A - Struct., 488, 125, 10.1016/j.msea.2007.12.018