Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses
Tóm tắt
In this paper, we study a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses. We show the existence of a bounded positive invariant and attracting set. The possibility of existence and uniqueness of positive equilibrium are considered. The asymptotic behavior of the positive equilibrium and the existence of Hopf-bifurcation of nonconstant periodic solutions surrounding the interior equilibrium are considered. The existence and non-existence of periodic solutions are established under suitable conditions. The permanence conditions are also established. We obtained sufficient conditions to ensure the global stability of the unique positive equilibrium, by using suitable Lyapunov functions, LaSalle invariance principle and Dulac’s criterion. We obtained also sufficient conditions for the global stability of the prey-extinction equilibrium when the unique positive equilibrium is not feasible. Finally, numerical simulations are presented to illustrate the analytical results.
Tài liệu tham khảo
Abrams, P.A.: The nature of predation: prey dependent, ratio-dependent or neither. Trends Ecol. Evol. 15, 337–341 (2000)
Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)
Arditi, R., Saiah, H.: Empirical evidence of the role of heterogeneity in ratio-dependent consumption. Ecology 73, 1544–1551 (1992)
Aziz-Alaoui, M.A.: Study of a Leslie-Gower type tritrophic population model. Chaos Solitons Fractals 14(8), 1275–1293 (2002)
Aziz-Alaoui, M.A., Daher Okiye, M.: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)
Balabane, M., Jazar, M., Souplet, Ph.: Oscillatory blow-up in nonlinear second order ODE’s: the critical case. Discrete Contin. Dyn. Syst. 9(3), 577–584 (2003)
Berezovskaya, F., Karev, G., Arditi, R.: Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol. 43, 221–246 (2001)
Cantrell, R.S., Cosner, C.: On the dynamics of predator-prey models with the Beddington-DeAngelis functional response. J. Math. Anal. Appl. 257, 206–222 (2001)
Crowley, P.H., Martin, E.K.: Functional responses and interference within and between year classes of a dragonfly population. J. North Am. Benthol. Soc. 8, 211–221 (1989)
Fan, M., Wang, Y.: Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response. J. Math. Anal. Appl. 295, 15–39 (2004)
Fan, M., Wang, Q., Zou, X.F.: Dynamics of a nonautonomous ratio-dependent predator-prey system. Proc. R. Soc. Edinb., Sect. A 133, 97–118 (2003)
Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Dekker, New York (1980)
Gaie, P., Zhang, H.: Qualitative analysis of a prey-predator system with Holling I functional response. J. Jilin Univ. Sci. 44(3), 373–376 (2006)
Hale, J.K.: Ordinary Differential Equations. Wiley-Interscience, New York (1969)
Hale, J.K., Kocak, H.: Dynamics and Bifurcations. Springer, New York (1991)
Hale, J.K., Waltman, P.: Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20(2), 388–395 (1989)
Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91(7), 385–398 (1966)
Holling, C.S.: On the dynamics of predator-prey systems with Beddington-DeAngelis functional response. Asian-Eur. J. Math. 4, 35–48 (2011)
Hsu, S.B., Hwang, T.W., Kuang, Y.: Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system. J. Math. Biol. 42, 489–506 (2001)
Hsu, S.B., Hwang, T.W., Kuang, Y.: Global dynamics of a predator prey model with Hassell-Varley type functional response. Discrete Contin. Dyn. Syst., Ser. B 10(4), 857–875 (2005)
Huentutripay, J., Jazar, M., Véron, L.: A dynamical system approach to the construction of singular solutions of some degenerate elliptic equations. J. Differ. Equ. 195(1), 175–193 (2003)
Hwang, T.W.: Global analysis of the predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl. 281, 395–401 (2003)
Hwang, T.W.: Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response. J. Math. Anal. Appl. 290, 113–122 (2004)
Hwang, J., Xiao, D.: Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response. Acta Math. Appl. Sin. 20, 167–178 (2004)
Jost, C.: Comparaison qualitative et quantitative de modèles proie-prédateur à des données chronologiques en écologie. Thèse de doctorat, Institut National Agronomique Paris-Grignon
Jost, C., Arini, O., Arditi, R.: About deterministic extinction in ratio-dependent predator-prey models. Bull. Math. Biol. 61(1), 19–32 (1999)
Kooij, R.E., Zegeling, A.: A predator-prey model with Ivlev’s functional response. J. Math. Anal. Appl. 198, 473–489 (1996)
Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)
Kuang, Y., Freedman, H.I.: Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math. Biosci. 88(1), 67–84 (1988)
Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, Berlin (1998)
Leslie, P.H., Crowley, J.C.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika 47, 219–234 (1960)
Marsden, J., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)
Peng, R., Wang, M.: Positive steady states of the Holling-Tanner prey-predator model with diffusion. Proc. R. Soc. Edinb. A 135, 149–164 (2005)
Quilin, T.: A predator-prey system with Ivlev’s functional response. J. Beihua Univ. Nat. Sci. 3(5), 381–384 (2002)
Shi, X., Zhou, X., Song, X.: Analysis of a stage-structured predator-prey model with Crowley-Martin function. J. Appl. Math. Comput. 36(1–2), 459–472 (2011)
Sugie, J., Kohno, R., Miyazaki, R.: On a predator-prey system of Holling type. Proc. Am. Math. Soc. 125(7), 2041–2050 (1997)
Upadhyay, R.K., Naji, R.K.: Dynamics of a three species food chain model with Crowley-Martin type functional response. Chaos Solitons Fractals 42, 1337–1346 (2009)
Upadhyay, R.K., Raw, S.N., Rai, V.: Dynamical complexities in a tri-trophic hybrid food chain model with Holling type II and Crowley-Martin functional responses. Nonlinear Anal. Model. Control 15, 366–375 (2010)
Wang, X.: Dynamics of a predator-prey system with Watt-type functional response. Master’s thesis, Northeast Normal University, Changchun (2005) (in Chinese)
Wang, X., Wang, W., Lin, X.: Chaotic behavior of a Watt-type predator-prey system with impulsive control strategy. Chaos Solitons Fractals 37, 706–718 (2008)
Wu, R., Lin, L.: Permanence and global attractivity of discrete predator-prey system with Hassell-Varley type functional response. Discrete Dyn. Nat. Soc., 1–17 (2009)
Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator-prey system. J. Math. Biol. 43, 268–290 (2001)
Zhou, X., Cui, J.: Global stability of the viral dynamics with Crowley-Martin functional response. Bull. Korean Math. Soc. 48, 555–574 (2011)
Zhuang, K., Wen, Z.: Analysis for a food chain model with Crowley-Martin functional response and time delay. World Acad. Sci., Eng. Technol. 61, 562–565 (2010)