Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer

Trends in Biotechnology - Tập 25 - Trang 145-152 - 2007
Paolo Fortina1,2, Larry J Kricka3, David J Graves4, Jason Park3, Terry Hyslop5,6,7, Felicia Tam8, Naomi Halas9, Saul Surrey10, Scott A. Waldman6,7
1Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
2Dipartimento di Medicina Sperimentale, Universita’ La Sapienza, 00185, Roma, Italy
3Department of Pathology and Laboratory Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
4Department of Chemical and Biomolecular Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
5Division of Biostatistics, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
6Division of Clinical Pharmacology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
7Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
8Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
9Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
10Cardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA

Tài liệu tham khảo

Meyerhardt, 2005, Systemic therapy for colorectal cancer, N. Engl. J. Med., 352, 476, 10.1056/NEJMra040958 Pantel, 1999, Detection and clinical importance of micrometastatic disease, J. Natl. Cancer Inst., 91, 1113, 10.1093/jnci/91.13.1113 O’Connell, 2004, Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging, J. Natl. Cancer Inst., 96, 1420, 10.1093/jnci/djh275 Carrithers, 1996, Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues, Proc. Natl. Acad. Sci. U. S. A., 93, 14827, 10.1073/pnas.93.25.14827 Wolfe, 2002, In vivo imaging of human colon cancer xenografts in immunodeficient mice using a guanylyl cyclase C-specific ligand, J. Nucl. Med., 43, 392 Frick, 2005, Guanylyl cyclase C: a molecular marker for staging and postoperative surveillance of patients with colorectal cancer, Expert Rev. Mol. Diagn., 5, 701, 10.1586/14737159.5.5.701 Nel, 2006, Toxic potential of materials at the nanolevel, Science, 311, 622, 10.1126/science.1114397 Service, 2006, Science policy. Priorities needed for nano-risk research and development, Science, 314, 45, 10.1126/science.314.5796.45 Ferrari, 2005, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 161, 10.1038/nrc1566 Couvreur, 2006, Nanotechnology: intelligent design to treat complex disease, Pharm. Res., 23, 1417, 10.1007/s11095-006-0284-8 Cuenca, 2006, Emerging implications of nanotechnology on cancer diagnostics and therapeutics, Cancer, 107, 459, 10.1002/cncr.22035 Farokhzad, 2006, Nanomedicine: developing smarter therapeutic and diagnostic modalities, Adv. Drug Deliv. Rev., 58, 1456, 10.1016/j.addr.2006.09.011 Grodzinski, 2006, Nanotechnology for cancer diagnostics: promises and challenges, Expert Rev. Mol. Diagn., 6, 307, 10.1586/14737159.6.3.307 Qiang, 2006, Iron/iron oxide core-shell nanoclusters for biomedical applications, J. Nanoparticle Res., 8, 489, 10.1007/s11051-005-9011-3 Sinha, 2006, Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery, Mol. Cancer Ther., 5, 1909, 10.1158/1535-7163.MCT-06-0141 Yih, 2006, Engineered nanoparticles as precise drug delivery systems, J. Cell. Biochem., 97, 1184, 10.1002/jcb.20796 Kroto, 1985, C60: buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0 Li, J. et al. (2005) Carbon nanotubes and nanowires for biological sensing. Methods Mol. Biol. 300, 191–123 Woolley, 2000, Structural biology with carbon nanotube AFM probes, Chem. Biol., 7, R193, 10.1016/S1074-5521(00)00037-5 Moses, 1955, Experimental and clinical studies with radioactive colloidal gold in the therapy of serous effusions arising from cancer, Cancer, 8, 417, 10.1002/1097-0142(1955)8:2<417::AID-CNCR2820080222>3.0.CO;2-W Ahlberg, 1969, Intra-articular injection of radioactive gold in treatment of chronic synovial effusion in the knee, Acta Rheumatol. Scand., 15, 81, 10.3109/rhe1.1969.15.issue-1-4.14 West, 2003, Engineered nanomaterials for biophotonic applications, improving sensing, imaging and therapeutics, Annu. Rev. Biomed. Eng., 5, 285, 10.1146/annurev.bioeng.5.011303.120723 Loo, 2005, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett., 5, 709, 10.1021/nl050127s Thorek, 2006, Superparamagnetic iron oxide nanoparticle probes for molecular imaging, Ann. Biomed. Eng., 34, 23, 10.1007/s10439-005-9002-7 Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. U. S. A., 100, 13549, 10.1073/pnas.2232479100 O’Neal, 2004, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Lett., 209, 171, 10.1016/j.canlet.2004.02.004 Devalapally, 2007, Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. Part 3: Therapeutic efficacy and safety studies in ovarian cancer xenograft model, Cancer Chemother. Pharmacol., 59, 477, 10.1007/s00280-006-0287-5 van Vlerken, 2006, Multi-functional polymeric nanoparticles for tumour-targeted drug delivery, Expert Opin. Drug Deliv., 3, 205, 10.1517/17425247.3.2.205 Farokhzad, 2006, Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo, Proc. Natl. Acad. Sci. U. S. A., 103, 6315, 10.1073/pnas.0601755103 Akerman, 2002, Nanocrystal targeting in vivo, Proc. Natl. Acad. Sci. U. S. A., 99, 12617, 10.1073/pnas.152463399 Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994 Matsumura, 1986, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res., 46, 6387 Hainfeld, 2004, The use of gold nanoparticles to enhance radiotherapy in mice, Phys. Med. Biol., 49, N309, 10.1088/0031-9155/49/18/N03 Loo, 2004, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat., 3, 33, 10.1177/153303460400300104 Kommareddy, 2007, Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice, J. Pharm. Sci., 96, 397, 10.1002/jps.20813 Birbe, 2005, Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract, Hum. Pathol., 36, 170, 10.1016/j.humpath.2004.12.002 Urbanski, 1995, Internalization of E. coli ST mediated by guanylyl cyclase C in T84 human colon carcinoma cells, Biochim. Biophys. Acta, 1245, 29, 10.1016/0304-4165(95)00068-M Hakki, 1993, Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes, Int. J. Biochem., 25, 557, 10.1016/0020-711X(93)90664-Z Hugues, 1992, Affinity purification of functional receptors for Escherichia coli heat-stable enterotoxin from rat intestine, Biochemistry, 31, 12, 10.1021/bi00116a003 Seydack, 2004, Nanoparticle labels in immunosensing using optical detection methods, Biosens. Bioelectron., 20, 2454, 10.1016/j.bios.2004.11.003 Kobayashi, 2005, Detection of lymph node involvement in hematologic malignancies using micromagnetic resonance lymphangiography with a gadolinum-labeled dendrimer nanoparticle, Neoplasia, 7, 984, 10.1593/neo.05454 Kobayashi, 2004, Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent, J. Natl. Cancer Inst., 96, 703, 10.1093/jnci/djh124 Mahmood, 2003, Near-infrared optical imaging of proteases in cancer, Mol. Cancer Ther., 2, 489 Perez, 2003, Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media, J. Am. Chem. Soc., 125, 10192, 10.1021/ja036409g Harisinghani, 2003, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, N. Engl. J. Med., 348, 2491, 10.1056/NEJMoa022749 Weissleder, 2005, Cell-specific targeting of nanoparticles by multivalent attachment of small molecules, Nat. Biotechnol., 23, 1418, 10.1038/nbt1159 Weissleder, 1999, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat. Biotechnol., 17, 375, 10.1038/7933 Liu, 2005, Nanocrystal-based bioelectronic coding of single-nucleotide polymorphisms, J. Am. Chem. Soc., 127, 38, 10.1021/ja043780a Chan, 2004, Nanocrystal biolabels with releasable fluorophores for immunoassays, Anal. Chem., 76, 3638, 10.1021/ac0353740 Huhtinen, 2004, Immunoassay of total prostate-specific antigen using europium(III) nanoparticle labels and streptavidin–biotin technology, J. Immunol. Methods, 294, 111, 10.1016/j.jim.2004.09.002 Henry, 2004, Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins, Anal. Biochem., 334, 1, 10.1016/j.ab.2004.07.008 Park, 2004, Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection, Anal. Chem., 76, 2649, 10.1021/ac035321i Sato, 2004, Single-base mutation detection using neutravidin-modified polystyrene nanoparticle aggregation, Anal. Sci., 20, 893, 10.2116/analsci.20.893 Zhang, 2004, Silica-nanoparticle-based interface for the enhanced immobilization and sequence-specific detection of DNA, Anal. Bioanal. Chem., 379, 1025, 10.1007/s00216-004-2653-7 Chu, 2005, An electrochemical stripping metallo immunoassay based on silver-enhanced gold nanoparticle label, Biosens. Bioelectron., 20, 1805, 10.1016/j.bios.2004.07.012 Lian, 2004, Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles, Anal. Biochem., 334, 135, 10.1016/j.ab.2004.08.005 Li, 2003, DNA molecules and configurations in a solid-state nanopore microscope, Nat. Mater., 2, 611, 10.1038/nmat965 Jin, 2001, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 294, 1901, 10.1126/science.1066541 Hao, 2004, Synthesis and optical properties of anisotropic metal nanoparticles, J. Fluoresc., 14, 331, 10.1023/B:JOFL.0000031815.71450.74 Nicewarner-Pena, 2001, Submicrometer metallic barcodes, Science, 294, 137, 10.1126/science.294.5540.137 Wang, 2004, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube-derived amplification of the recognition and transduction events, J. Am. Chem. Soc., 126, 3010, 10.1021/ja031723w Patolsky, 2004, Electrical detection of single viruses, Proc. Natl. Acad. Sci. U. S. A., 101, 14017, 10.1073/pnas.0406159101 Basu, 2004, Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibody-bound gold nanowire arrays (GNWA), Glycoconj. J., 21, 487, 10.1007/s10719-004-5539-1 Ramanathan, 2005, Bioaffinity sensing using biologically functionalized conducting polymer nanowire, J. Am. Chem. Soc., 127, 496, 10.1021/ja044486l Parac-Vogt, 2005, Paramagnetic liposomes containing amphiphilic bisamide derivatives of Gd-DTPA with aromatic side chain groups as possible contrast agents for magnetic resonance imaging, Eur. Biophys. J., 11, 1 Saito, 2005, Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain, Exp. Neurol., 196, 381, 10.1016/j.expneurol.2005.08.016 Mulder, 2005, MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle, FASEB J., 19, 2008, 10.1096/fj.05-4145fje Parungo, 2005, Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging, J. Thorac. Cardiovasc. Surg., 129, 844, 10.1016/j.jtcvs.2004.08.001 Rahman, 2005, Optical imaging of cervical pre-cancers with structured illumination: an integrated approach, Gynecol. Oncol., 99, S112, 10.1016/j.ygyno.2005.07.053 Loo, 2005, Gold nanoshell bioconjugates for molecular imaging in living cells, Opt. Lett., 1, 1012, 10.1364/OL.30.001012 Sitharaman, 2005, Superparamagnetic gadonanotubes are high-performance MRI contrast agents, Chem. Commun., 21, 3915, 10.1039/b504435a