Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer
Tài liệu tham khảo
Meyerhardt, 2005, Systemic therapy for colorectal cancer, N. Engl. J. Med., 352, 476, 10.1056/NEJMra040958
Pantel, 1999, Detection and clinical importance of micrometastatic disease, J. Natl. Cancer Inst., 91, 1113, 10.1093/jnci/91.13.1113
O’Connell, 2004, Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging, J. Natl. Cancer Inst., 96, 1420, 10.1093/jnci/djh275
Carrithers, 1996, Guanylyl cyclase C is a selective marker for metastatic colorectal tumors in human extraintestinal tissues, Proc. Natl. Acad. Sci. U. S. A., 93, 14827, 10.1073/pnas.93.25.14827
Wolfe, 2002, In vivo imaging of human colon cancer xenografts in immunodeficient mice using a guanylyl cyclase C-specific ligand, J. Nucl. Med., 43, 392
Frick, 2005, Guanylyl cyclase C: a molecular marker for staging and postoperative surveillance of patients with colorectal cancer, Expert Rev. Mol. Diagn., 5, 701, 10.1586/14737159.5.5.701
Nel, 2006, Toxic potential of materials at the nanolevel, Science, 311, 622, 10.1126/science.1114397
Service, 2006, Science policy. Priorities needed for nano-risk research and development, Science, 314, 45, 10.1126/science.314.5796.45
Ferrari, 2005, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 161, 10.1038/nrc1566
Couvreur, 2006, Nanotechnology: intelligent design to treat complex disease, Pharm. Res., 23, 1417, 10.1007/s11095-006-0284-8
Cuenca, 2006, Emerging implications of nanotechnology on cancer diagnostics and therapeutics, Cancer, 107, 459, 10.1002/cncr.22035
Farokhzad, 2006, Nanomedicine: developing smarter therapeutic and diagnostic modalities, Adv. Drug Deliv. Rev., 58, 1456, 10.1016/j.addr.2006.09.011
Grodzinski, 2006, Nanotechnology for cancer diagnostics: promises and challenges, Expert Rev. Mol. Diagn., 6, 307, 10.1586/14737159.6.3.307
Qiang, 2006, Iron/iron oxide core-shell nanoclusters for biomedical applications, J. Nanoparticle Res., 8, 489, 10.1007/s11051-005-9011-3
Sinha, 2006, Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery, Mol. Cancer Ther., 5, 1909, 10.1158/1535-7163.MCT-06-0141
Yih, 2006, Engineered nanoparticles as precise drug delivery systems, J. Cell. Biochem., 97, 1184, 10.1002/jcb.20796
Kroto, 1985, C60: buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0
Li, J. et al. (2005) Carbon nanotubes and nanowires for biological sensing. Methods Mol. Biol. 300, 191–123
Woolley, 2000, Structural biology with carbon nanotube AFM probes, Chem. Biol., 7, R193, 10.1016/S1074-5521(00)00037-5
Moses, 1955, Experimental and clinical studies with radioactive colloidal gold in the therapy of serous effusions arising from cancer, Cancer, 8, 417, 10.1002/1097-0142(1955)8:2<417::AID-CNCR2820080222>3.0.CO;2-W
Ahlberg, 1969, Intra-articular injection of radioactive gold in treatment of chronic synovial effusion in the knee, Acta Rheumatol. Scand., 15, 81, 10.3109/rhe1.1969.15.issue-1-4.14
West, 2003, Engineered nanomaterials for biophotonic applications, improving sensing, imaging and therapeutics, Annu. Rev. Biomed. Eng., 5, 285, 10.1146/annurev.bioeng.5.011303.120723
Loo, 2005, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett., 5, 709, 10.1021/nl050127s
Thorek, 2006, Superparamagnetic iron oxide nanoparticle probes for molecular imaging, Ann. Biomed. Eng., 34, 23, 10.1007/s10439-005-9002-7
Hirsch, 2003, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. U. S. A., 100, 13549, 10.1073/pnas.2232479100
O’Neal, 2004, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Lett., 209, 171, 10.1016/j.canlet.2004.02.004
Devalapally, 2007, Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. Part 3: Therapeutic efficacy and safety studies in ovarian cancer xenograft model, Cancer Chemother. Pharmacol., 59, 477, 10.1007/s00280-006-0287-5
van Vlerken, 2006, Multi-functional polymeric nanoparticles for tumour-targeted drug delivery, Expert Opin. Drug Deliv., 3, 205, 10.1517/17425247.3.2.205
Farokhzad, 2006, Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo, Proc. Natl. Acad. Sci. U. S. A., 103, 6315, 10.1073/pnas.0601755103
Akerman, 2002, Nanocrystal targeting in vivo, Proc. Natl. Acad. Sci. U. S. A., 99, 12617, 10.1073/pnas.152463399
Gao, 2004, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol., 22, 969, 10.1038/nbt994
Matsumura, 1986, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res., 46, 6387
Hainfeld, 2004, The use of gold nanoparticles to enhance radiotherapy in mice, Phys. Med. Biol., 49, N309, 10.1088/0031-9155/49/18/N03
Loo, 2004, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol. Cancer Res. Treat., 3, 33, 10.1177/153303460400300104
Kommareddy, 2007, Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice, J. Pharm. Sci., 96, 397, 10.1002/jps.20813
Birbe, 2005, Guanylyl cyclase C is a marker of intestinal metaplasia, dysplasia, and adenocarcinoma of the gastrointestinal tract, Hum. Pathol., 36, 170, 10.1016/j.humpath.2004.12.002
Urbanski, 1995, Internalization of E. coli ST mediated by guanylyl cyclase C in T84 human colon carcinoma cells, Biochim. Biophys. Acta, 1245, 29, 10.1016/0304-4165(95)00068-M
Hakki, 1993, Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes, Int. J. Biochem., 25, 557, 10.1016/0020-711X(93)90664-Z
Hugues, 1992, Affinity purification of functional receptors for Escherichia coli heat-stable enterotoxin from rat intestine, Biochemistry, 31, 12, 10.1021/bi00116a003
Seydack, 2004, Nanoparticle labels in immunosensing using optical detection methods, Biosens. Bioelectron., 20, 2454, 10.1016/j.bios.2004.11.003
Kobayashi, 2005, Detection of lymph node involvement in hematologic malignancies using micromagnetic resonance lymphangiography with a gadolinum-labeled dendrimer nanoparticle, Neoplasia, 7, 984, 10.1593/neo.05454
Kobayashi, 2004, Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent, J. Natl. Cancer Inst., 96, 703, 10.1093/jnci/djh124
Mahmood, 2003, Near-infrared optical imaging of proteases in cancer, Mol. Cancer Ther., 2, 489
Perez, 2003, Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media, J. Am. Chem. Soc., 125, 10192, 10.1021/ja036409g
Harisinghani, 2003, Noninvasive detection of clinically occult lymph-node metastases in prostate cancer, N. Engl. J. Med., 348, 2491, 10.1056/NEJMoa022749
Weissleder, 2005, Cell-specific targeting of nanoparticles by multivalent attachment of small molecules, Nat. Biotechnol., 23, 1418, 10.1038/nbt1159
Weissleder, 1999, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nat. Biotechnol., 17, 375, 10.1038/7933
Liu, 2005, Nanocrystal-based bioelectronic coding of single-nucleotide polymorphisms, J. Am. Chem. Soc., 127, 38, 10.1021/ja043780a
Chan, 2004, Nanocrystal biolabels with releasable fluorophores for immunoassays, Anal. Chem., 76, 3638, 10.1021/ac0353740
Huhtinen, 2004, Immunoassay of total prostate-specific antigen using europium(III) nanoparticle labels and streptavidin–biotin technology, J. Immunol. Methods, 294, 111, 10.1016/j.jim.2004.09.002
Henry, 2004, Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins, Anal. Biochem., 334, 1, 10.1016/j.ab.2004.07.008
Park, 2004, Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection, Anal. Chem., 76, 2649, 10.1021/ac035321i
Sato, 2004, Single-base mutation detection using neutravidin-modified polystyrene nanoparticle aggregation, Anal. Sci., 20, 893, 10.2116/analsci.20.893
Zhang, 2004, Silica-nanoparticle-based interface for the enhanced immobilization and sequence-specific detection of DNA, Anal. Bioanal. Chem., 379, 1025, 10.1007/s00216-004-2653-7
Chu, 2005, An electrochemical stripping metallo immunoassay based on silver-enhanced gold nanoparticle label, Biosens. Bioelectron., 20, 1805, 10.1016/j.bios.2004.07.012
Lian, 2004, Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles, Anal. Biochem., 334, 135, 10.1016/j.ab.2004.08.005
Li, 2003, DNA molecules and configurations in a solid-state nanopore microscope, Nat. Mater., 2, 611, 10.1038/nmat965
Jin, 2001, Photoinduced conversion of silver nanospheres to nanoprisms, Science, 294, 1901, 10.1126/science.1066541
Hao, 2004, Synthesis and optical properties of anisotropic metal nanoparticles, J. Fluoresc., 14, 331, 10.1023/B:JOFL.0000031815.71450.74
Nicewarner-Pena, 2001, Submicrometer metallic barcodes, Science, 294, 137, 10.1126/science.294.5540.137
Wang, 2004, Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube-derived amplification of the recognition and transduction events, J. Am. Chem. Soc., 126, 3010, 10.1021/ja031723w
Patolsky, 2004, Electrical detection of single viruses, Proc. Natl. Acad. Sci. U. S. A., 101, 14017, 10.1073/pnas.0406159101
Basu, 2004, Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibody-bound gold nanowire arrays (GNWA), Glycoconj. J., 21, 487, 10.1007/s10719-004-5539-1
Ramanathan, 2005, Bioaffinity sensing using biologically functionalized conducting polymer nanowire, J. Am. Chem. Soc., 127, 496, 10.1021/ja044486l
Parac-Vogt, 2005, Paramagnetic liposomes containing amphiphilic bisamide derivatives of Gd-DTPA with aromatic side chain groups as possible contrast agents for magnetic resonance imaging, Eur. Biophys. J., 11, 1
Saito, 2005, Gadolinium-loaded liposomes allow for real-time magnetic resonance imaging of convection-enhanced delivery in the primate brain, Exp. Neurol., 196, 381, 10.1016/j.expneurol.2005.08.016
Mulder, 2005, MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle, FASEB J., 19, 2008, 10.1096/fj.05-4145fje
Parungo, 2005, Intraoperative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging, J. Thorac. Cardiovasc. Surg., 129, 844, 10.1016/j.jtcvs.2004.08.001
Rahman, 2005, Optical imaging of cervical pre-cancers with structured illumination: an integrated approach, Gynecol. Oncol., 99, S112, 10.1016/j.ygyno.2005.07.053
Loo, 2005, Gold nanoshell bioconjugates for molecular imaging in living cells, Opt. Lett., 1, 1012, 10.1364/OL.30.001012
Sitharaman, 2005, Superparamagnetic gadonanotubes are high-performance MRI contrast agents, Chem. Commun., 21, 3915, 10.1039/b504435a