Engineering biological systems using automated biofoundries

Metabolic Engineering - Tập 42 - Trang 98-108 - 2017
Ran Chao1,2, Shekhar Mishra3,2, Tong Si1, Huimin Zhao1,2,4
1Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
2Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
3Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
4Departments of Chemistry, Biochemistry, Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States

Tài liệu tham khảo

Ajikumar, 2010, Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli, Science, 330, 70, 10.1126/science.1191652 Appleton, 2014, Interactive assembly algorithms for molecular cloning, Nat. Methods, 11, 10.1038/nmeth.2939 Arakawa, 2001, Mutant loxP vectors for selectable marker recycle and conditional knock-outs, BMC Biotechnol., 1, 7, 10.1186/1472-6750-1-7 Araki, 2015, M-path: a compass for navigating potential metabolic pathways, Bioinformatics, 31, 905, 10.1093/bioinformatics/btu750 Bao, 2015, Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 585, 10.1021/sb500255k Baudin, 1993, A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 21, 3329, 10.1093/nar/21.14.3329 Ben Yehezkel, 2011, Computer-aided high-throughput cloning of bacteria in liquid medium, Biotechniques, 50, 124, 10.2144/000113514 Benjamin, 2016, SBE supplement: commercializing industrial biotechnology – use cost models to guide R&D, Chem. Eng. Prog., 112, 44 Blin, 2013, antiSMASH 2.0 – a versatile platform for genome mining of secondary metabolite producers, Nucleic Acids Res., 41, 204, 10.1093/nar/gkt449 Brunk, 2016, Characterizing strain variation in engineered E. coli using a multi-omics-based workflow, Cell Syst., 2, 335, 10.1016/j.cels.2016.04.004 Burgard, 2003, OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization, Biotechnol. Bioeng., 84, 647, 10.1002/bit.10803 Cai, 2005, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nat. Methods, 2, 449, 10.1038/nmeth761 Campodonico, 2014, Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path, Metab. Eng., 25, 140, 10.1016/j.ymben.2014.07.009 Carbonell, 2014, Retropath: automated pipeline for embedded metabolic circuits, ACS Synth. Biol., 3, 565, 10.1021/sb4001273 Carbonell, 2014, XTMS: pathway design in an eXTended metabolic space, Nucleic Acids Res., 42, 389, 10.1093/nar/gku362 Carbonell, 2011, A retrosynthetic biology approach to metabolic pathway design for therapeutic production, BMC Syst. Biol., 5, 10.1186/1752-0509-5-122 Chakrabarti, 2013, Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints, Biotechnol. J., 8, 1043, 10.1002/biot.201300091 Chambers, 2016, The foundry: the DNA synthesis and construction foundry at imperial college, Biochem. Soc. Trans., 44, 687, 10.1042/BST20160007 Chao, 2017, Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry, ACS Synth. Biol., 6, 678, 10.1021/acssynbio.6b00293 Chao, 2015, Building biological foundries for next-generation synthetic biology, Sci. China Life Sci., 58, 658, 10.1007/s11427-015-4866-8 Chao, 2015, Recent advances in DNA assembly technologies, Fems Yeast Res., 15 Chapman, 2003, Lab automation and robotics: automation on the move, Nature, 421, 10.1038/421661a Check Hayden, 2015, Synthetic biology lures silicon valley investors, Nature, 527, 19, 10.1038/527019a Chowdhury, 2014, k-OptForce: integrating kinetics with flux balance analysis for strain design, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003487 Committee on Industrialization of Biology, N. R. C, 2015. Industrialization of Biology: A Roadmap to Accelerate the Advanced Manufacturing of Chemicals The National Academies Press, Washington, DC. Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143 Creecy, 2015, Quantitative bacterial transcriptomics with RNA-seq, Curr. Opin. Microbiol., 23, 133, 10.1016/j.mib.2014.11.011 Davison, 2016, SBE supplement: commercializing industrial biotechnology – technology challenges and opportunities, Chem. Eng. Prog., 112, 35 de Kok, 2014, Rapid and reliable DNA assembly via ligase cycling reaction, ACS Synth. Biol., 3, 97, 10.1021/sb4001992 Delépine, 2016, SensiPath: computer-aided design of sensing-enabling metabolic pathways, Nucleic Acids Res., 44, W226, 10.1093/nar/gkw305 Dhar, 2013, Data science and prediction, Commun. ACM, 56, 64, 10.1145/2500499 Dharmadi, 2014, High-throughput, cost-effective verification of structural DNA assembly, Nucleic Acids Res., 42, e22, 10.1093/nar/gkt1088 Dominguez, 2016, Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol., 17, 5, 10.1038/nrm.2015.2 Dorr, 2016, Fully automatized high-throughput enzyme library screening using a robotic platform, Biotechnol. Bioeng., 113, 1421, 10.1002/bit.25925 Ellis, 2001, High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides, Proc. Natl. Acad. Sci. USA, 98, 6742, 10.1073/pnas.121164898 Ellis, 2011, DNA assembly for synthetic biology: from parts to pathways and beyond, Integr. Biol., 3, 109, 10.1039/c0ib00070a Engineers, T.A.S.oM., 2016. History of Mechanical Engineering. The American Society of Mechanical Engineers. Engler, 2008, A one pot, one step, precision cloning method with high throughput capability, PLoS One, 3, e3647, 10.1371/journal.pone.0003647 Farasat, 2014, Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria, Mol. Syst. Biol., 10 Fell, 1992, Metabolic control analysis: a survey of its theoretical and experimental development, Biochem. J., 286, 313, 10.1042/bj2860313 Fletcher, 2016, Exploring synthetic and systems biology at the university of Edinburgh, Biochem. Soc. Trans., 44, 692, 10.1042/BST20160006 Fu, 2012, Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting, Nat. Biotechnol., 30, 440, 10.1038/nbt.2183 Galdzicki, 2014, The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology, Nat. Biotechnol., 32, 545, 10.1038/nbt.2891 Galdzicki, 2011, Standard biological parts knowledgebase, PLoS One, 6 Garcia-Ruiz, 2016, 1 George, 2014, Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production, Biotechnol. Bioeng., 111, 1648, 10.1002/bit.25226 Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318 Haber, 2000, Partners and pathways – repairing a double-strand break, Trends Genet., 16, 259, 10.1016/S0168-9525(00)02022-9 Ham, 2012, Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools, Nucleic Acids Res., 40, 1, 10.1093/nar/gks531 Han, 2008, High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy, Nanomed. Nanotechnol., 4, 215, 10.1016/j.nano.2008.03.005 Hatzimanikatis, 2005, Exploring the diversity of complex metabolic networks, Bioinformatics, 21, 1603, 10.1093/bioinformatics/bti213 Heckerman, D., 1995. A Tutorial on Learning Bayesian Networks. Technical Report MSR-TR-95-6. 41. Heller, 2002, DNA microarray technology: devices, systems, and applications, Annu. Rev. Biomed. Eng., 4, 129, 10.1146/annurev.bioeng.4.020702.153438 Henry, 2010, Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate, Biotechnol. Bioeng., 106, 462 Hillson, 2016, Improving synthetic biology communication: Recommended practices for visual depiction and digital submission of genetic designs, ACS Synth. Biol., 5, 449, 10.1021/acssynbio.6b00146 Hillson, 2012, j5 DNA assembly design automation software, ACS Synth. Biol., 1, 14, 10.1021/sb2000116 Hoover, 2002, DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis, Nucleic Acids Res., 30, e43, 10.1093/nar/30.10.e43 Iverson, 2016, CIDAR MoClo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology, ACS Synth. Biol., 5, 99, 10.1021/acssynbio.5b00124 Jiang, 2015, Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters, Nat. Commun., 6, 8101, 10.1038/ncomms9101 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Kacser, 1995, The control of flux, Biochem. Soc. Trans., 23, 341, 10.1042/bst0230341 Kanehisa, 2002, The KEGG databases at Genome Net, Nucleic Acids Res., 30, 42, 10.1093/nar/30.1.42 Kang, 2012, Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli, Biotechnol. Lett., 34, 527, 10.1007/s10529-011-0794-2 Kanigowska, 2016, Smart DNA fabrication using sound waves: applying acoustic dispensing technologies to synthetic biology, Jala-J. Lab Autom., 21, 49, 10.1177/2211068215593754 Ke, 2015, Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686, Bioprocess Biosyst. Eng., 38, 2189, 10.1007/s00449-015-1458-8 Kelwick, 2014, Developments in the tools and methodologies of synthetic biology, Front. Bioeng. Biotechnol., 2, 10.3389/fbioe.2014.00060 Kim, 2013, Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels, Appl. Environ. Microbiol., 79, 931, 10.1128/AEM.02736-12 Kim, 2011, Large-Scale Bi-Level strain design approaches and Mixed-Integer programming solution techniques, PLoS One, 6 Kim, 1996, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain, Proc. Natl. Acad. Sci. USA, 93, 1156, 10.1073/pnas.93.3.1156 King, 2009, The automation of science, Science, 324, 85, 10.1126/science.1165620 King, 2004, Functional genomic hypothesis generation and experimentation by a robot scientist, Nature, 427, 247, 10.1038/nature02236 Kosuri, 2014, Large-scale de novo DNA synthesis: technologies and applications, Nat. Methods, 11, 499, 10.1038/nmeth.2918 Lee, 2013, Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay, Nucleic Acids Res., 41, 10668, 10.1093/nar/gkt809 Li, 2007, Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC, Nat. Methods, 4, 251, 10.1038/nmeth1010 Linshiz, 2016, End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis, J. Biol. Eng., 10, 15, 10.1186/s13036-016-0024-5 Long, 2015, Computational methods in metabolic engineering for strain design, Curr. Opin. Biotechnol., 34, 135, 10.1016/j.copbio.2014.12.019 Luo, 2015, Systematic identification of a panel of strong constitutive promoters from Streptomyces albus, ACS Synth. Biol., 4, 1001, 10.1021/acssynbio.5b00016 Mahadevan, 2002, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys. J., 83, 1331, 10.1016/S0006-3495(02)73903-9 Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033 Margolin, 2006, ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, BMC Bioinform., 7, S7, 10.1186/1471-2105-7-S1-S7 Medema, 2011, AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences, Nucleic Acids Res., 39, 339, 10.1093/nar/gkr466 Medema, 2012, Computational tools for the synthetic design of biochemical pathways, Nat. Rev. Microbiol., 10, 191, 10.1038/nrmicro2717 Meldrum, 2000, Automation for genomics, part one: preparation for sequencing, Genome Res, 10, 1081, 10.1101/gr.101400 Metzker, 2010, Sequencing technologies – the next generation, Nat. Rev. Genet., 11, 31, 10.1038/nrg2626 Miller, 2011, A TALE nuclease architecture for efficient genome editing, Nat. Biotechnol., 29, 143, 10.1038/nbt.1755 Na, 2013, Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs, Nat. Biotechnol., 31, 170, 10.1038/nbt.2461 Nielsen, A.aK., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E.a., Ross, D., Densmore, D., Voigt, C.a., 2016. Genetic Circuit Design Automation. Science (New York, N.Y.). 352, aac7341-aac7341. Nikolaev, 2010, The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems, Metab. Eng., 12, 26, 10.1016/j.ymben.2009.08.010 Nolan, 2011, Dynamic model of CHO cell metabolism, Metab. Eng., 13, 108, 10.1016/j.ymben.2010.09.003 Nolan, 2012, Dynamic model for CHO cell engineering, J. Biotechnol., 158, 24, 10.1016/j.jbiotec.2012.01.009 Obataya, 2005, Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle, Nano Lett., 5, 27, 10.1021/nl0485399 Okuda, 2008, KEGG Atlas mapping for global analysis of metabolic pathways, Nucleic Acids Res., 36, 10.1093/nar/gkn282 Olofsson, 2003, Single-cell electroporation, Curr. Opin. Biotechnol., 14, 29, 10.1016/S0958-1669(02)00003-4 Patrick, 2015, DNA assembly in 3D printed fluidics, PLoS One, 10 Petrone, 2016, DNA writers attract investors, Nat. Biotechnol., 34, 363, 10.1038/nbt0416-363 Petzold, 2015, Analytics for metabolic engineering, Front. Bioeng. Biotechnol., 3, 135, 10.3389/fbioe.2015.00135 Pharkya, 2004, OptStrain: a computational framework for redesign of microbial production systems OptStrain: a computational framework for redesign of microbial production systems, Genome Res., 2367, 10.1101/gr.2872004 Pharkya, 2006, An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems, Metab. Eng., 8, 1, 10.1016/j.ymben.2005.08.003 Ra, L. F., P, C., A, C., M, D., D, F., Aj, J., Njw, R., Cj, R., N, S., M, V., A, W., C, Y., P, B., R, B., Gg, C., Jl, F., C, G., R, G., Db, K., J, M., Ns, S., P, S., E, T., Nj, T., 2016. SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production. Synthetic and Systems Biotechnology. Raterink, 2014, Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics, TrAC – Trends Anal. Chem., 61, 157, 10.1016/j.trac.2014.06.003 Redden, 2015, The development and characterization of synthetic minimal yeast promoters, Nat. Commun., 6, 7810, 10.1038/ncomms8810 Redding-Johanson, 2011, Targeted proteomics for metabolic pathway optimization: application to terpene production, Metab. Eng., 13, 194, 10.1016/j.ymben.2010.12.005 Richardson, 2010, GeneDesign 3.0 is an updated synthetic biology toolkit, Nucleic Acids Res., 38, 2603, 10.1093/nar/gkq143 Richardson, 2006, GeneDesign: rapid, automated design of multikilobase synthetic genes GeneDesign: rapid, automated design of multikilobase synthetic genes, Genome Res., 550, 10.1101/gr.4431306 Rodrigo, 2008, DESHARKY: automatic design of metabolic pathways for optimal cell growth, Bioinformatics, 24, 2554, 10.1093/bioinformatics/btn471 Roehner, 2015, Proposed data model for the next version of the synthetic biology open language, ACS Synth. Biol., 4, 57, 10.1021/sb500176h Roehner, 2016, Double Dutch: a tool for designing combinatorial libraries of biological systems, ACS Synth. Biol., 5, 507, 10.1021/acssynbio.5b00232 Sainz De Murieta, 2016, Toward the first data acquisition standard in synthetic biology, ACS Synth. Biol., 5, 817, 10.1021/acssynbio.5b00222 Salis, 2009, Automated design of synthetic ribosome binding sites to control protein expression, Nat. Biotechnol., 27, 946, 10.1038/nbt.1568 Sauer, 1987, Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae, Mol. Cell Biol., 7, 2087, 10.1128/MCB.7.6.2087 Schellenberger, 2011, Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nat. Protoc., 6, 1290, 10.1038/nprot.2011.308 Settles, B., 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. 6, pp. 1–114. Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005 Shapland, 2015, Low-cost, high-throughput sequencing of DNA assemblies using a highly multiplexed nextera process, ACS Synth. Biol., 4, 860, 10.1021/sb500362n Sharma, 2014, Differential RNA-seq: the approach behind and the biological insight gained, Curr. Opin. Microbiol., 19, 97, 10.1016/j.mib.2014.06.010 Shetty, 2008, Engineering BioBrick vectors from BioBrick parts, J. Biol. Eng., 2 Shi, 2016, A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae, Metab. Eng., 33, 19, 10.1016/j.ymben.2015.10.011 Shih, 2015, A versatile microfluidic device for automating synthetic biology, ACS Synth. Biol., 4, 1151, 10.1021/acssynbio.5b00062 Shin, 2013, Production of bulk chemicals via novel metabolic pathways in microorganisms, Biotechnol. Adv., 31, 925, 10.1016/j.biotechadv.2012.12.008 Si, 2017, Automated multiplex genome-scale engineering in yeast, Nat. Commun., 8, 15187, 10.1038/ncomms15187 Si, 2015, Regulatory RNA-assisted genome engineering in microorganisms, Curr. Opin. Biotechnol., 36, 85, 10.1016/j.copbio.2015.08.003 Si, 2015, RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering, ACS Synth. Biol., 4, 283, 10.1021/sb500074a Smanski, 2014, Functional optimization of gene clusters by combinatorial design and assembly, Nat. Biotechnol., 32, 1241, 10.1038/nbt.3063 Somvanshi, 2013, Metabolic control analysis, Encycl. Syst. Biol., 1229, 10.1007/978-1-4419-9863-7_1084 Stahl, 1984, Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation, J. Bacteriol., 158, 411, 10.1128/JB.158.2.411-418.1984 Tepper, 2009, Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways, Bioinformatics, 26, 536, 10.1093/bioinformatics/btp704 Tsai, 2015, Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR, Biotechnol. Bioeng., 112, 2406, 10.1002/bit.25632 Villalobos, 2006, Gene Designer: a synthetic biology tool for constructing artificial DNA segments, BMC Bioinform., 7, 285, 10.1186/1471-2105-7-285 Villaverde, 2016, Metabolic engineering with multi-objective optimization of kinetic models, J. Biotechnol., 222, 1, 10.1016/j.jbiotec.2016.01.005 Wang, 2009, Programming cells by multiplex genome engineering and accelerated evolution, Nature, 460, 894, 10.1038/nature08187 Wang, 2013, Micro-/nanofluidics based cell electroporation, Biomicrofluidics, 7 Weber, 2011, A modular cloning system for standardized assembly of multigene constructs, PLoS One, 6, e16765, 10.1371/journal.pone.0016765 Weber, 2015, AntiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res., 43, W237, 10.1093/nar/gkv437 Woodruff, 2016, Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration, Nucleic Acids Res., 45 Woodruff, 2017, Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration, Nucleic Acids Res., 45, 1567 Xu, 2016, Improving metabolic pathway efficiency by statistical model-based multivariate regulatory metabolic engineering, ACS Synth. Biol. Xu, 2013, ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network, PLoS One, 8 Zanghellini, 2016, Synthetic biology for chemical production, Chem. Eng., 123, 44 Zhang, 2000, DNA cloning by homologous recombination in Escherichia coli, Nat. Biotechnol., 18, 1314, 10.1038/82449 Zhou, 2015, Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor, Nucleic Acids Res., 43, 10560