Engineering biological systems using automated biofoundries
Tài liệu tham khảo
Ajikumar, 2010, Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli, Science, 330, 70, 10.1126/science.1191652
Appleton, 2014, Interactive assembly algorithms for molecular cloning, Nat. Methods, 11, 10.1038/nmeth.2939
Arakawa, 2001, Mutant loxP vectors for selectable marker recycle and conditional knock-outs, BMC Biotechnol., 1, 7, 10.1186/1472-6750-1-7
Araki, 2015, M-path: a compass for navigating potential metabolic pathways, Bioinformatics, 31, 905, 10.1093/bioinformatics/btu750
Bao, 2015, Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae, ACS Synth. Biol., 4, 585, 10.1021/sb500255k
Baudin, 1993, A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae, Nucleic Acids Res., 21, 3329, 10.1093/nar/21.14.3329
Ben Yehezkel, 2011, Computer-aided high-throughput cloning of bacteria in liquid medium, Biotechniques, 50, 124, 10.2144/000113514
Benjamin, 2016, SBE supplement: commercializing industrial biotechnology – use cost models to guide R&D, Chem. Eng. Prog., 112, 44
Blin, 2013, antiSMASH 2.0 – a versatile platform for genome mining of secondary metabolite producers, Nucleic Acids Res., 41, 204, 10.1093/nar/gkt449
Brunk, 2016, Characterizing strain variation in engineered E. coli using a multi-omics-based workflow, Cell Syst., 2, 335, 10.1016/j.cels.2016.04.004
Burgard, 2003, OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization, Biotechnol. Bioeng., 84, 647, 10.1002/bit.10803
Cai, 2005, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nat. Methods, 2, 449, 10.1038/nmeth761
Campodonico, 2014, Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path, Metab. Eng., 25, 140, 10.1016/j.ymben.2014.07.009
Carbonell, 2014, Retropath: automated pipeline for embedded metabolic circuits, ACS Synth. Biol., 3, 565, 10.1021/sb4001273
Carbonell, 2014, XTMS: pathway design in an eXTended metabolic space, Nucleic Acids Res., 42, 389, 10.1093/nar/gku362
Carbonell, 2011, A retrosynthetic biology approach to metabolic pathway design for therapeutic production, BMC Syst. Biol., 5, 10.1186/1752-0509-5-122
Chakrabarti, 2013, Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints, Biotechnol. J., 8, 1043, 10.1002/biot.201300091
Chambers, 2016, The foundry: the DNA synthesis and construction foundry at imperial college, Biochem. Soc. Trans., 44, 687, 10.1042/BST20160007
Chao, 2017, Fully automated one-step synthesis of single-transcript TALEN pairs using a biological foundry, ACS Synth. Biol., 6, 678, 10.1021/acssynbio.6b00293
Chao, 2015, Building biological foundries for next-generation synthetic biology, Sci. China Life Sci., 58, 658, 10.1007/s11427-015-4866-8
Chao, 2015, Recent advances in DNA assembly technologies, Fems Yeast Res., 15
Chapman, 2003, Lab automation and robotics: automation on the move, Nature, 421, 10.1038/421661a
Check Hayden, 2015, Synthetic biology lures silicon valley investors, Nature, 527, 19, 10.1038/527019a
Chowdhury, 2014, k-OptForce: integrating kinetics with flux balance analysis for strain design, PLoS Comput. Biol., 10, 10.1371/journal.pcbi.1003487
Committee on Industrialization of Biology, N. R. C, 2015. Industrialization of Biology: A Roadmap to Accelerate the Advanced Manufacturing of Chemicals The National Academies Press, Washington, DC.
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143
Creecy, 2015, Quantitative bacterial transcriptomics with RNA-seq, Curr. Opin. Microbiol., 23, 133, 10.1016/j.mib.2014.11.011
Davison, 2016, SBE supplement: commercializing industrial biotechnology – technology challenges and opportunities, Chem. Eng. Prog., 112, 35
de Kok, 2014, Rapid and reliable DNA assembly via ligase cycling reaction, ACS Synth. Biol., 3, 97, 10.1021/sb4001992
Delépine, 2016, SensiPath: computer-aided design of sensing-enabling metabolic pathways, Nucleic Acids Res., 44, W226, 10.1093/nar/gkw305
Dhar, 2013, Data science and prediction, Commun. ACM, 56, 64, 10.1145/2500499
Dharmadi, 2014, High-throughput, cost-effective verification of structural DNA assembly, Nucleic Acids Res., 42, e22, 10.1093/nar/gkt1088
Dominguez, 2016, Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation, Nat. Rev. Mol. Cell Biol., 17, 5, 10.1038/nrm.2015.2
Dorr, 2016, Fully automatized high-throughput enzyme library screening using a robotic platform, Biotechnol. Bioeng., 113, 1421, 10.1002/bit.25925
Ellis, 2001, High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides, Proc. Natl. Acad. Sci. USA, 98, 6742, 10.1073/pnas.121164898
Ellis, 2011, DNA assembly for synthetic biology: from parts to pathways and beyond, Integr. Biol., 3, 109, 10.1039/c0ib00070a
Engineers, T.A.S.oM., 2016. History of Mechanical Engineering. The American Society of Mechanical Engineers.
Engler, 2008, A one pot, one step, precision cloning method with high throughput capability, PLoS One, 3, e3647, 10.1371/journal.pone.0003647
Farasat, 2014, Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria, Mol. Syst. Biol., 10
Fell, 1992, Metabolic control analysis: a survey of its theoretical and experimental development, Biochem. J., 286, 313, 10.1042/bj2860313
Fletcher, 2016, Exploring synthetic and systems biology at the university of Edinburgh, Biochem. Soc. Trans., 44, 692, 10.1042/BST20160006
Fu, 2012, Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting, Nat. Biotechnol., 30, 440, 10.1038/nbt.2183
Galdzicki, 2014, The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology, Nat. Biotechnol., 32, 545, 10.1038/nbt.2891
Galdzicki, 2011, Standard biological parts knowledgebase, PLoS One, 6
Garcia-Ruiz, 2016, 1
George, 2014, Correlation analysis of targeted proteins and metabolites to assess and engineer microbial isopentenol production, Biotechnol. Bioeng., 111, 1648, 10.1002/bit.25226
Gibson, 2009, Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, 6, 343, 10.1038/nmeth.1318
Haber, 2000, Partners and pathways – repairing a double-strand break, Trends Genet., 16, 259, 10.1016/S0168-9525(00)02022-9
Ham, 2012, Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools, Nucleic Acids Res., 40, 1, 10.1093/nar/gks531
Han, 2008, High-efficiency DNA injection into a single human mesenchymal stem cell using a nanoneedle and atomic force microscopy, Nanomed. Nanotechnol., 4, 215, 10.1016/j.nano.2008.03.005
Hatzimanikatis, 2005, Exploring the diversity of complex metabolic networks, Bioinformatics, 21, 1603, 10.1093/bioinformatics/bti213
Heckerman, D., 1995. A Tutorial on Learning Bayesian Networks. Technical Report MSR-TR-95-6. 41.
Heller, 2002, DNA microarray technology: devices, systems, and applications, Annu. Rev. Biomed. Eng., 4, 129, 10.1146/annurev.bioeng.4.020702.153438
Henry, 2010, Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate, Biotechnol. Bioeng., 106, 462
Hillson, 2016, Improving synthetic biology communication: Recommended practices for visual depiction and digital submission of genetic designs, ACS Synth. Biol., 5, 449, 10.1021/acssynbio.6b00146
Hillson, 2012, j5 DNA assembly design automation software, ACS Synth. Biol., 1, 14, 10.1021/sb2000116
Hoover, 2002, DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis, Nucleic Acids Res., 30, e43, 10.1093/nar/30.10.e43
Iverson, 2016, CIDAR MoClo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology, ACS Synth. Biol., 5, 99, 10.1021/acssynbio.5b00124
Jiang, 2015, Cas9-assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters, Nat. Commun., 6, 8101, 10.1038/ncomms9101
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Kacser, 1995, The control of flux, Biochem. Soc. Trans., 23, 341, 10.1042/bst0230341
Kanehisa, 2002, The KEGG databases at Genome Net, Nucleic Acids Res., 30, 42, 10.1093/nar/30.1.42
Kang, 2012, Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli, Biotechnol. Lett., 34, 527, 10.1007/s10529-011-0794-2
Kanigowska, 2016, Smart DNA fabrication using sound waves: applying acoustic dispensing technologies to synthetic biology, Jala-J. Lab Autom., 21, 49, 10.1177/2211068215593754
Ke, 2015, Metabolic control analysis of L-lactate synthesis pathway in Rhizopus oryzae As 3.2686, Bioprocess Biosyst. Eng., 38, 2189, 10.1007/s00449-015-1458-8
Kelwick, 2014, Developments in the tools and methodologies of synthetic biology, Front. Bioeng. Biotechnol., 2, 10.3389/fbioe.2014.00060
Kim, 2013, Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels, Appl. Environ. Microbiol., 79, 931, 10.1128/AEM.02736-12
Kim, 2011, Large-Scale Bi-Level strain design approaches and Mixed-Integer programming solution techniques, PLoS One, 6
Kim, 1996, Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain, Proc. Natl. Acad. Sci. USA, 93, 1156, 10.1073/pnas.93.3.1156
King, 2009, The automation of science, Science, 324, 85, 10.1126/science.1165620
King, 2004, Functional genomic hypothesis generation and experimentation by a robot scientist, Nature, 427, 247, 10.1038/nature02236
Kosuri, 2014, Large-scale de novo DNA synthesis: technologies and applications, Nat. Methods, 11, 499, 10.1038/nmeth.2918
Lee, 2013, Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay, Nucleic Acids Res., 41, 10668, 10.1093/nar/gkt809
Li, 2007, Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC, Nat. Methods, 4, 251, 10.1038/nmeth1010
Linshiz, 2016, End-to-end automated microfluidic platform for synthetic biology: from design to functional analysis, J. Biol. Eng., 10, 15, 10.1186/s13036-016-0024-5
Long, 2015, Computational methods in metabolic engineering for strain design, Curr. Opin. Biotechnol., 34, 135, 10.1016/j.copbio.2014.12.019
Luo, 2015, Systematic identification of a panel of strong constitutive promoters from Streptomyces albus, ACS Synth. Biol., 4, 1001, 10.1021/acssynbio.5b00016
Mahadevan, 2002, Dynamic flux balance analysis of diauxic growth in Escherichia coli, Biophys. J., 83, 1331, 10.1016/S0006-3495(02)73903-9
Mali, 2013, RNA-guided human genome engineering via Cas9, Science, 339, 823, 10.1126/science.1232033
Margolin, 2006, ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, BMC Bioinform., 7, S7, 10.1186/1471-2105-7-S1-S7
Medema, 2011, AntiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences, Nucleic Acids Res., 39, 339, 10.1093/nar/gkr466
Medema, 2012, Computational tools for the synthetic design of biochemical pathways, Nat. Rev. Microbiol., 10, 191, 10.1038/nrmicro2717
Meldrum, 2000, Automation for genomics, part one: preparation for sequencing, Genome Res, 10, 1081, 10.1101/gr.101400
Metzker, 2010, Sequencing technologies – the next generation, Nat. Rev. Genet., 11, 31, 10.1038/nrg2626
Miller, 2011, A TALE nuclease architecture for efficient genome editing, Nat. Biotechnol., 29, 143, 10.1038/nbt.1755
Na, 2013, Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs, Nat. Biotechnol., 31, 170, 10.1038/nbt.2461
Nielsen, A.aK., Der, B.S., Shin, J., Vaidyanathan, P., Paralanov, V., Strychalski, E.a., Ross, D., Densmore, D., Voigt, C.a., 2016. Genetic Circuit Design Automation. Science (New York, N.Y.). 352, aac7341-aac7341.
Nikolaev, 2010, The elucidation of metabolic pathways and their improvements using stable optimization of large-scale kinetic models of cellular systems, Metab. Eng., 12, 26, 10.1016/j.ymben.2009.08.010
Nolan, 2011, Dynamic model of CHO cell metabolism, Metab. Eng., 13, 108, 10.1016/j.ymben.2010.09.003
Nolan, 2012, Dynamic model for CHO cell engineering, J. Biotechnol., 158, 24, 10.1016/j.jbiotec.2012.01.009
Obataya, 2005, Nanoscale operation of a living cell using an atomic force microscope with a nanoneedle, Nano Lett., 5, 27, 10.1021/nl0485399
Okuda, 2008, KEGG Atlas mapping for global analysis of metabolic pathways, Nucleic Acids Res., 36, 10.1093/nar/gkn282
Olofsson, 2003, Single-cell electroporation, Curr. Opin. Biotechnol., 14, 29, 10.1016/S0958-1669(02)00003-4
Patrick, 2015, DNA assembly in 3D printed fluidics, PLoS One, 10
Petrone, 2016, DNA writers attract investors, Nat. Biotechnol., 34, 363, 10.1038/nbt0416-363
Petzold, 2015, Analytics for metabolic engineering, Front. Bioeng. Biotechnol., 3, 135, 10.3389/fbioe.2015.00135
Pharkya, 2004, OptStrain: a computational framework for redesign of microbial production systems OptStrain: a computational framework for redesign of microbial production systems, Genome Res., 2367, 10.1101/gr.2872004
Pharkya, 2006, An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems, Metab. Eng., 8, 1, 10.1016/j.ymben.2005.08.003
Ra, L. F., P, C., A, C., M, D., D, F., Aj, J., Njw, R., Cj, R., N, S., M, V., A, W., C, Y., P, B., R, B., Gg, C., Jl, F., C, G., R, G., Db, K., J, M., Ns, S., P, S., E, T., Nj, T., 2016. SYNBIOCHEM Synthetic Biology Research Centre, Manchester – A UK foundry for fine and speciality chemicals production. Synthetic and Systems Biotechnology.
Raterink, 2014, Recent developments in sample-pretreatment techniques for mass spectrometry-based metabolomics, TrAC – Trends Anal. Chem., 61, 157, 10.1016/j.trac.2014.06.003
Redden, 2015, The development and characterization of synthetic minimal yeast promoters, Nat. Commun., 6, 7810, 10.1038/ncomms8810
Redding-Johanson, 2011, Targeted proteomics for metabolic pathway optimization: application to terpene production, Metab. Eng., 13, 194, 10.1016/j.ymben.2010.12.005
Richardson, 2010, GeneDesign 3.0 is an updated synthetic biology toolkit, Nucleic Acids Res., 38, 2603, 10.1093/nar/gkq143
Richardson, 2006, GeneDesign: rapid, automated design of multikilobase synthetic genes GeneDesign: rapid, automated design of multikilobase synthetic genes, Genome Res., 550, 10.1101/gr.4431306
Rodrigo, 2008, DESHARKY: automatic design of metabolic pathways for optimal cell growth, Bioinformatics, 24, 2554, 10.1093/bioinformatics/btn471
Roehner, 2015, Proposed data model for the next version of the synthetic biology open language, ACS Synth. Biol., 4, 57, 10.1021/sb500176h
Roehner, 2016, Double Dutch: a tool for designing combinatorial libraries of biological systems, ACS Synth. Biol., 5, 507, 10.1021/acssynbio.5b00232
Sainz De Murieta, 2016, Toward the first data acquisition standard in synthetic biology, ACS Synth. Biol., 5, 817, 10.1021/acssynbio.5b00222
Salis, 2009, Automated design of synthetic ribosome binding sites to control protein expression, Nat. Biotechnol., 27, 946, 10.1038/nbt.1568
Sauer, 1987, Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae, Mol. Cell Biol., 7, 2087, 10.1128/MCB.7.6.2087
Schellenberger, 2011, Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nat. Protoc., 6, 1290, 10.1038/nprot.2011.308
Settles, B., 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. 6, pp. 1–114.
Shalem, 2014, Genome-scale CRISPR-Cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005
Shapland, 2015, Low-cost, high-throughput sequencing of DNA assemblies using a highly multiplexed nextera process, ACS Synth. Biol., 4, 860, 10.1021/sb500362n
Sharma, 2014, Differential RNA-seq: the approach behind and the biological insight gained, Curr. Opin. Microbiol., 19, 97, 10.1016/j.mib.2014.06.010
Shetty, 2008, Engineering BioBrick vectors from BioBrick parts, J. Biol. Eng., 2
Shi, 2016, A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae, Metab. Eng., 33, 19, 10.1016/j.ymben.2015.10.011
Shih, 2015, A versatile microfluidic device for automating synthetic biology, ACS Synth. Biol., 4, 1151, 10.1021/acssynbio.5b00062
Shin, 2013, Production of bulk chemicals via novel metabolic pathways in microorganisms, Biotechnol. Adv., 31, 925, 10.1016/j.biotechadv.2012.12.008
Si, 2017, Automated multiplex genome-scale engineering in yeast, Nat. Commun., 8, 15187, 10.1038/ncomms15187
Si, 2015, Regulatory RNA-assisted genome engineering in microorganisms, Curr. Opin. Biotechnol., 36, 85, 10.1016/j.copbio.2015.08.003
Si, 2015, RNAi-assisted genome evolution in Saccharomyces cerevisiae for complex phenotype engineering, ACS Synth. Biol., 4, 283, 10.1021/sb500074a
Smanski, 2014, Functional optimization of gene clusters by combinatorial design and assembly, Nat. Biotechnol., 32, 1241, 10.1038/nbt.3063
Somvanshi, 2013, Metabolic control analysis, Encycl. Syst. Biol., 1229, 10.1007/978-1-4419-9863-7_1084
Stahl, 1984, Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation, J. Bacteriol., 158, 411, 10.1128/JB.158.2.411-418.1984
Tepper, 2009, Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways, Bioinformatics, 26, 536, 10.1093/bioinformatics/btp704
Tsai, 2015, Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR, Biotechnol. Bioeng., 112, 2406, 10.1002/bit.25632
Villalobos, 2006, Gene Designer: a synthetic biology tool for constructing artificial DNA segments, BMC Bioinform., 7, 285, 10.1186/1471-2105-7-285
Villaverde, 2016, Metabolic engineering with multi-objective optimization of kinetic models, J. Biotechnol., 222, 1, 10.1016/j.jbiotec.2016.01.005
Wang, 2009, Programming cells by multiplex genome engineering and accelerated evolution, Nature, 460, 894, 10.1038/nature08187
Wang, 2013, Micro-/nanofluidics based cell electroporation, Biomicrofluidics, 7
Weber, 2011, A modular cloning system for standardized assembly of multigene constructs, PLoS One, 6, e16765, 10.1371/journal.pone.0016765
Weber, 2015, AntiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters, Nucleic Acids Res., 43, W237, 10.1093/nar/gkv437
Woodruff, 2016, Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration, Nucleic Acids Res., 45
Woodruff, 2017, Registry in a tube: multiplexed pools of retrievable parts for genetic design space exploration, Nucleic Acids Res., 45, 1567
Xu, 2016, Improving metabolic pathway efficiency by statistical model-based multivariate regulatory metabolic engineering, ACS Synth. Biol.
Xu, 2013, ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network, PLoS One, 8
Zanghellini, 2016, Synthetic biology for chemical production, Chem. Eng., 123, 44
Zhang, 2000, DNA cloning by homologous recombination in Escherichia coli, Nat. Biotechnol., 18, 1314, 10.1038/82449
Zhou, 2015, Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor, Nucleic Acids Res., 43, 10560