Performance evaluation of automatically tuned continuous optimizers on different benchmark sets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Auger, 2005, A restart CMA evolution strategy with increasing population size, 1769
Auger, 2009, Experimental comparisons of derivative free optimization algorithms, 3, 10.1007/978-3-642-02011-7_3
Aydın, 2011
Back, 1997
Bersini, 1996, Results of the first international contest on evolutionary optimisation, 611
Birattari, 2010, F-race and iterated F-race: an overview, 311
Bischl, 2012, Algorithm selection based on exploratory landscape analysis and cost-sensitive learning, 313
Conn, 2009, Introduction to derivative-free optimization
Conover, 1999
Dorigo, 1992
Dorigo, 2004
Eiben, 2007, Parameter control in evolutionary algorithms, 19
El-Abd, 2012, Performance assessment of foraging algorithms vs evolutionary algorithms, Inform. Sci., 182, 243, 10.1016/j.ins.2011.09.005
Gould, 2003, CUTEr and SifDec: a constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw., 29, 373, 10.1145/962437.962439
Hansen, 2001, Completely derandomized self-adaptation in evolution strategies, Evol. Comput., 9, 159, 10.1162/106365601750190398
Hansen, 2009
Hansen, 2010, Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009, 1689
Hansen, 2011, Impacts of invariance in search: when CMA-ES and PSO face ill-conditioned and non-separable problems, Appl. Soft Comput., 11, 5755, 10.1016/j.asoc.2011.03.001
Herrera, 1998, Tackling real-coded genetic algorithms: operators and tools for behavioural analysis, Artif. Intell. Rev., 12, 265, 10.1023/A:1006504901164
Herrera, 2010
Hutter, 2009, ParamILS: an automatic algorithm configuration framework, J. Artif. Intell. Res., 36, 267, 10.1613/jair.2861
Hutter, 2011, Sequential model-based optimization for general algorithm configuration, 507
Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459, 10.1007/s10898-007-9149-x
Kennedy, 1995, Particle swarm optimization, 1942
Kennedy, 2001
Krasnogor, 2005, A tutorial for competent memetic algorithms: model, taxonomy, and design issues, IEEE Trans. Evol. Comput., 9, 474, 10.1109/TEVC.2005.850260
LaTorre, 2009
LaTorre, 2011, A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test, Soft Comput., 15, 2187, 10.1007/s00500-010-0646-3
Leguizamón, 2010, An alternative ACOR algorithm for continuous optimization problems, 48
Liao, 2013
Liao, 2011, An incremental ant colony algorithm with local search for continuous optimization, 125
Liao, 2012
Liao, 2013, Artificial bee colonies for continuous optimization: experimental analysis and improvements, Swarm Intell., 7, 327, 10.1007/s11721-013-0088-5
Liao, 2013, Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set, Soft Comput., 17, 1031, 10.1007/s00500-012-0946-x
Liao, 2013
Liao, 2014, A unified ant colony optimization algorithm for continuous optimization, Eur. J. Operat. Res., 234, 597, 10.1016/j.ejor.2013.10.024
López-Ibáñez, 2011
Lozano, 2011, Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems, Soft Comput., 15, 2085, 10.1007/s00500-010-0639-2
Mersmann, 2011, Exploratory landscape analysis, 829
Molina, 2010, Memetic algorithms for continuous optimisation based on local search chains, Evol. Comput., 18, 27, 10.1162/evco.2010.18.1.18102
Montes de Oca, 2011, An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms, Soft Comput., 15, 2233, 10.1007/s00500-010-0649-0
Moscato, 1999, Memetic algorithms: a short introduction, 219
Muñoz, 2012, A meta-learning prediction model of algorithm performance for continuous optimization problems, 226
Nannen, 2007, Relevance estimation and value calibration of evolutionary algorithm parameters, 975
Powell, 1964, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 155, 10.1093/comjnl/7.2.155
Qin, 2009, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13, 398, 10.1109/TEVC.2008.927706
Rios, 2013, Derivative-free optimization: a review of algorithms and comparison of software implementations, J. Global Optim., 56, 1247, 10.1007/s10898-012-9951-y
Smit, 2010, Parameter tuning of evolutionary algorithms: generalist vs. specialist, 542
Socha, 2008, Ant colony optimization for continuous domains, Eur. J. Oper. Res., 185, 1155, 10.1016/j.ejor.2006.06.046
Storn, 1997, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341, 10.1023/A:1008202821328
Suganthan, 2005
Tseng, 2008, Multiple trajectory search for large scale global optimization, 3052