Performance evaluation of automatically tuned continuous optimizers on different benchmark sets

Applied Soft Computing - Tập 27 - Trang 490-503 - 2015
Tianjun Liao1, Daniel Molina2, Thomas Stützle3
1State Key Laboratory of Complex System Simulation, Beijing Institute of System Engineering, Beijing, China
2Dept. of Computer Engineering, University of Cádiz, Cádiz, Spain
3IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Auger, 2005, A restart CMA evolution strategy with increasing population size, 1769

Auger, 2009, Experimental comparisons of derivative free optimization algorithms, 3, 10.1007/978-3-642-02011-7_3

Aydın, 2011

Back, 1997

Bersini, 1996, Results of the first international contest on evolutionary optimisation, 611

Birattari, 2009, Tuning metaheuristics: a machine learning perspective, 10.1007/978-3-642-00483-4

Birattari, 2010, F-race and iterated F-race: an overview, 311

Bischl, 2012, Algorithm selection based on exploratory landscape analysis and cost-sensitive learning, 313

Conn, 2009, Introduction to derivative-free optimization

Conover, 1999

Dorigo, 1992

Dorigo, 2004

Eiben, 2007, Parameter control in evolutionary algorithms, 19

El-Abd, 2012, Performance assessment of foraging algorithms vs evolutionary algorithms, Inform. Sci., 182, 243, 10.1016/j.ins.2011.09.005

Gould, 2003, CUTEr and SifDec: a constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw., 29, 373, 10.1145/962437.962439

Hansen, 2001, Completely derandomized self-adaptation in evolution strategies, Evol. Comput., 9, 159, 10.1162/106365601750190398

Hansen, 2009

Hansen, 2010, Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009, 1689

Hansen, 2011, Impacts of invariance in search: when CMA-ES and PSO face ill-conditioned and non-separable problems, Appl. Soft Comput., 11, 5755, 10.1016/j.asoc.2011.03.001

Herrera, 1998, Tackling real-coded genetic algorithms: operators and tools for behavioural analysis, Artif. Intell. Rev., 12, 265, 10.1023/A:1006504901164

Herrera, 2010

Hoos, 2012, Programming by optimization, Commun. ACM, 55, 70, 10.1145/2076450.2076469

Hutter, 2009, ParamILS: an automatic algorithm configuration framework, J. Artif. Intell. Res., 36, 267, 10.1613/jair.2861

Hutter, 2011, Sequential model-based optimization for general algorithm configuration, 507

Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim., 39, 459, 10.1007/s10898-007-9149-x

Kennedy, 1995, Particle swarm optimization, 1942

Kennedy, 2001

Krasnogor, 2005, A tutorial for competent memetic algorithms: model, taxonomy, and design issues, IEEE Trans. Evol. Comput., 9, 474, 10.1109/TEVC.2005.850260

LaTorre, 2009

LaTorre, 2011, A MOS-based dynamic memetic differential evolution algorithm for continuous optimization: a scalability test, Soft Comput., 15, 2187, 10.1007/s00500-010-0646-3

Leguizamón, 2010, An alternative ACOR algorithm for continuous optimization problems, 48

Liao, 2013

Liao, 2011, An incremental ant colony algorithm with local search for continuous optimization, 125

Liao, 2012

Liao, 2013, Artificial bee colonies for continuous optimization: experimental analysis and improvements, Swarm Intell., 7, 327, 10.1007/s11721-013-0088-5

Liao, 2013, Computational results for an automatically tuned CMA-ES with increasing population size on the CEC’05 benchmark set, Soft Comput., 17, 1031, 10.1007/s00500-012-0946-x

Liao, 2013

Liao, 2014, A unified ant colony optimization algorithm for continuous optimization, Eur. J. Operat. Res., 234, 597, 10.1016/j.ejor.2013.10.024

López-Ibáñez, 2011

Lozano, 2011, Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems, Soft Comput., 15, 2085, 10.1007/s00500-010-0639-2

Mersmann, 2011, Exploratory landscape analysis, 829

Molina, 2010, Memetic algorithms for continuous optimisation based on local search chains, Evol. Comput., 18, 27, 10.1162/evco.2010.18.1.18102

Montes de Oca, 2011, An incremental particle swarm for large-scale continuous optimization problems: an example of tuning-in-the-loop (re)design of optimization algorithms, Soft Comput., 15, 2233, 10.1007/s00500-010-0649-0

Moscato, 1999, Memetic algorithms: a short introduction, 219

Muñoz, 2012, A meta-learning prediction model of algorithm performance for continuous optimization problems, 226

Nannen, 2007, Relevance estimation and value calibration of evolutionary algorithm parameters, 975

Powell, 1964, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 155, 10.1093/comjnl/7.2.155

Qin, 2009, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13, 398, 10.1109/TEVC.2008.927706

Rios, 2013, Derivative-free optimization: a review of algorithms and comparison of software implementations, J. Global Optim., 56, 1247, 10.1007/s10898-012-9951-y

Smit, 2010, Parameter tuning of evolutionary algorithms: generalist vs. specialist, 542

Socha, 2008, Ant colony optimization for continuous domains, Eur. J. Oper. Res., 185, 1155, 10.1016/j.ejor.2006.06.046

Storn, 1997, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11, 341, 10.1023/A:1008202821328

Suganthan, 2005

Talbi, 2002, A taxonomy of hybrid metaheuristics, J. Heuristics, 8, 541, 10.1023/A:1016540724870

Tseng, 2008, Multiple trajectory search for large scale global optimization, 3052

Whitley, 1996, Evaluating evolutionary algorithms, Artif. Intell., 85, 245, 10.1016/0004-3702(95)00124-7