Bacterial Riboswitches Cooperatively Bind Ni 2+ or Co 2+ Ions and Control Expression of Heavy Metal Transporters

Molecular Cell - Tập 57 - Trang 1088-1098 - 2015
Kazuhiro Furukawa1, Arati Ramesh2, Zhiyuan Zhou1, Zasha Weinberg3, Tenaya Vallery4, Wade C. Winkler2, Ronald R. Breaker1,3,4
1Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
2Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742 USA
3Howard Hughes Medical Institute, New Haven, CT 06520, USA
4Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA

Tài liệu tham khảo

Agranoff, 1998, Metal ion homeostasis and intracellular parasitism, Mol. Microbiol., 28, 403, 10.1046/j.1365-2958.1998.00790.x Anton, 1999, CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34, J. Bacteriol., 181, 6876, 10.1128/JB.181.22.6876-6881.1999 Baker, 2012, Widespread genetic switches and toxicity resistance proteins for fluoride, Science, 335, 233, 10.1126/science.1215063 Bouzat, 2013, Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria, J. Mol. Evol., 76, 267, 10.1007/s00239-013-9558-z Breaker, 2011, Prospects for riboswitch discovery and analysis, Mol. Cell, 43, 867, 10.1016/j.molcel.2011.08.024 Ciesiołka, 1998, Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs, J. Mol. Biol., 275, 211, 10.1006/jmbi.1997.1462 Cromie, 2006, An RNA sensor for intracellular Mg(2+), Cell, 125, 71, 10.1016/j.cell.2006.01.043 Dann, 2007, Structure and mechanism of a metal-sensing regulatory RNA, Cell, 130, 878, 10.1016/j.cell.2007.06.051 Ferre-D’Amare, 2011, The roles of metal ions in regulation by riboswitches, Met. Ions Life. Sci., 9, 141, 10.1039/9781849732512-00141 Garst, 2011, Riboswitches: structures and mechanisms, Cold Spring Harb. Perspect. Biol., 3, 10.1101/cshperspect.a003533 Giedroc, 2007, Metal sensor proteins: nature’s metalloregulated allosteric switches, Dalton Trans., 3107, 10.1039/b706769k Grosse, 2004, Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans, Arch. Microbiol., 182, 109, 10.1007/s00203-004-0670-8 Li, 1999, Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2′-Hydroxyl Group, J. Am. Chem. Soc., 121, 5364, 10.1021/ja990592p Ma, 2009, Coordination chemistry of bacterial metal transport and sensing, Chem. Rev., 109, 4644, 10.1021/cr900077w Mandal, 2004, Gene regulation by riboswitches, Nat. Rev. Mol. Cell Biol., 5, 451, 10.1038/nrm1403 Nies, 1999, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 51, 730, 10.1007/s002530051457 Nies, 2003, Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiol. Rev., 27, 313, 10.1016/S0168-6445(03)00048-2 Ramesh, 2010, Magnesium-sensing riboswitches in bacteria, RNA Biol., 7, 77, 10.4161/rna.7.1.10490 Ramesh, 2011, Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes, J. Mol. Biol., 407, 556, 10.1016/j.jmb.2011.01.049 Regulski, 2008, In-line probing analysis of riboswitches, Methods Mol. Biol., 419, 53, 10.1007/978-1-59745-033-1_4 Roth, 2009, The structural and functional diversity of metabolite-binding riboswitches, Annu. Rev. Biochem., 78, 305, 10.1146/annurev.biochem.78.070507.135656 Serganov, 2012, Metabolite recognition principles and molecular mechanisms underlying riboswitch function, Annu. Rev. Biophys., 41, 343, 10.1146/annurev-biophys-101211-113224 Shi, 2014, Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella, J. Biol. Chem., 289, 11353, 10.1074/jbc.M113.517516 Soukup, 1999, Relationship between internucleotide linkage geometry and the stability of RNA, RNA, 5, 1308, 10.1017/S1355838299990891 Trausch, 2011, The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer, Structure, 19, 1413, 10.1016/j.str.2011.06.019 Wakeman, 2009, Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs, J. Mol. Biol., 392, 723, 10.1016/j.jmb.2009.07.033 Waldron, 2009, How do bacterial cells ensure that metalloproteins get the correct metal?, Nat. Rev. Microbiol., 7, 25, 10.1038/nrmicro2057 Weinberg, 2010, Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes, Genome Biol., 11, R31, 10.1186/gb-2010-11-3-r31 Zivarts, 2005, Engineered allosteric ribozymes that respond to specific divalent metal ions, Nucleic Acids Res., 33, 622, 10.1093/nar/gki182