Bacterial Riboswitches Cooperatively Bind Ni 2+ or Co 2+ Ions and Control Expression of Heavy Metal Transporters
Tài liệu tham khảo
Agranoff, 1998, Metal ion homeostasis and intracellular parasitism, Mol. Microbiol., 28, 403, 10.1046/j.1365-2958.1998.00790.x
Anton, 1999, CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34, J. Bacteriol., 181, 6876, 10.1128/JB.181.22.6876-6881.1999
Baker, 2012, Widespread genetic switches and toxicity resistance proteins for fluoride, Science, 335, 233, 10.1126/science.1215063
Bouzat, 2013, Evolutionary analysis and lateral gene transfer of two-component regulatory systems associated with heavy-metal tolerance in bacteria, J. Mol. Evol., 76, 267, 10.1007/s00239-013-9558-z
Breaker, 2011, Prospects for riboswitch discovery and analysis, Mol. Cell, 43, 867, 10.1016/j.molcel.2011.08.024
Ciesiołka, 1998, Patterns of cleavages induced by lead ions in defined RNA secondary structure motifs, J. Mol. Biol., 275, 211, 10.1006/jmbi.1997.1462
Cromie, 2006, An RNA sensor for intracellular Mg(2+), Cell, 125, 71, 10.1016/j.cell.2006.01.043
Dann, 2007, Structure and mechanism of a metal-sensing regulatory RNA, Cell, 130, 878, 10.1016/j.cell.2007.06.051
Ferre-D’Amare, 2011, The roles of metal ions in regulation by riboswitches, Met. Ions Life. Sci., 9, 141, 10.1039/9781849732512-00141
Garst, 2011, Riboswitches: structures and mechanisms, Cold Spring Harb. Perspect. Biol., 3, 10.1101/cshperspect.a003533
Giedroc, 2007, Metal sensor proteins: nature’s metalloregulated allosteric switches, Dalton Trans., 3107, 10.1039/b706769k
Grosse, 2004, Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcNp in Ralstonia metallidurans, Arch. Microbiol., 182, 109, 10.1007/s00203-004-0670-8
Li, 1999, Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2′-Hydroxyl Group, J. Am. Chem. Soc., 121, 5364, 10.1021/ja990592p
Ma, 2009, Coordination chemistry of bacterial metal transport and sensing, Chem. Rev., 109, 4644, 10.1021/cr900077w
Mandal, 2004, Gene regulation by riboswitches, Nat. Rev. Mol. Cell Biol., 5, 451, 10.1038/nrm1403
Nies, 1999, Microbial heavy-metal resistance, Appl. Microbiol. Biotechnol., 51, 730, 10.1007/s002530051457
Nies, 2003, Efflux-mediated heavy metal resistance in prokaryotes, FEMS Microbiol. Rev., 27, 313, 10.1016/S0168-6445(03)00048-2
Ramesh, 2010, Magnesium-sensing riboswitches in bacteria, RNA Biol., 7, 77, 10.4161/rna.7.1.10490
Ramesh, 2011, Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes, J. Mol. Biol., 407, 556, 10.1016/j.jmb.2011.01.049
Regulski, 2008, In-line probing analysis of riboswitches, Methods Mol. Biol., 419, 53, 10.1007/978-1-59745-033-1_4
Roth, 2009, The structural and functional diversity of metabolite-binding riboswitches, Annu. Rev. Biochem., 78, 305, 10.1146/annurev.biochem.78.070507.135656
Serganov, 2012, Metabolite recognition principles and molecular mechanisms underlying riboswitch function, Annu. Rev. Biophys., 41, 343, 10.1146/annurev-biophys-101211-113224
Shi, 2014, Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella, J. Biol. Chem., 289, 11353, 10.1074/jbc.M113.517516
Soukup, 1999, Relationship between internucleotide linkage geometry and the stability of RNA, RNA, 5, 1308, 10.1017/S1355838299990891
Trausch, 2011, The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer, Structure, 19, 1413, 10.1016/j.str.2011.06.019
Wakeman, 2009, Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs, J. Mol. Biol., 392, 723, 10.1016/j.jmb.2009.07.033
Waldron, 2009, How do bacterial cells ensure that metalloproteins get the correct metal?, Nat. Rev. Microbiol., 7, 25, 10.1038/nrmicro2057
Weinberg, 2010, Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes, Genome Biol., 11, R31, 10.1186/gb-2010-11-3-r31
Zivarts, 2005, Engineered allosteric ribozymes that respond to specific divalent metal ions, Nucleic Acids Res., 33, 622, 10.1093/nar/gki182