Fundamental models for flow batteries

Progress in Energy and Combustion Science - Tập 49 - Trang 40-58 - 2015
Q. Xu1, T.S. Zhao1
1Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region

Tài liệu tham khảo

National Research Council, 2008 Skyllas-Kazacos, 2011, Progress in flow battery research and development, J Electrochem Soc, 158, R55, 10.1149/1.3599565 Yang, 2011, Electrochemical energy storage for green grid, Chem Rev, 111, 3577, 10.1021/cr100290v Barton, 2004, Energy storage and its use with intermittent renewable energy, IEEE Trans Energy Convers, 19, 441, 10.1109/TEC.2003.822305 Electropaedia. Energy sources and energy storage, battery and energy encyclopaedia and history of technology, http://www.mpoweruk.com/performance.html. Electrical Storage Association. http://www.electricitystorage.org/ESA/tech.html. Chen, 2009, A review of the problems of energy storage, Prog Nat Sci, 19, 291, 10.1016/j.pnsc.2008.07.014 Soloveichik, 2011, Battery technologies for large-scale stationary energy storage, Annu Rev Chem Biomol Eng, 2, 503, 10.1146/annurev-chembioeng-061010-114116 Shigematsu, 2011, Redox flow battery for energy storage, SEI Tech Rev, 73, 4 de Leon, 2006, Redox flow cells for energy conversion, J Power Sources, 160, 716, 10.1016/j.jpowsour.2006.02.095 Nguyen, 2010, Flow batteries, ECS Interface, 19, 54 Zhang, 2010, Redox flow battery for energy storage, ECS Trans, 28, 1, 10.1149/1.3492325 Skyllas-Kazacos, 2010, Recent advances with UNSW vanadium-based redox flow batteries, Int J Energy Res, 34, 182, 10.1002/er.1658 Kear, 2012, Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects, Int J Energy Res, 36, 1105, 10.1002/er.1863 Weber, 2011, Redox flow batteries: a review, J Appl Electrochem, 41, 1137, 10.1007/s10800-011-0348-2 Yang, 2010, Enabling renewable energy and the future grid with advanced electricity storage, JOM, 62, 14, 10.1007/s11837-010-0129-0 Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Yue, 2010, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, Carbon, 48, 3079, 10.1016/j.carbon.2010.04.044 Han, 2011, Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery, Carbon, 49, 693, 10.1016/j.carbon.2010.10.022 Zhou, 2006, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery, Electrochim Acta, 51, 6304, 10.1016/j.electacta.2006.03.106 Hagg, 2002, Novel bipolar electrodes for battery applications, J Appl Electrochem, 32, 1063, 10.1023/A:1021228304148 Jia, 2010, A significantly improved membrane for vanadium redox flow battery, J Power Sources, 195, 4380, 10.1016/j.jpowsour.2010.02.008 Kim, 2010, Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries, Electrochem Commun, 12, 1650, 10.1016/j.elecom.2010.09.018 Xing, 2010, Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application, J Membr Sci, 354, 68, 10.1016/j.memsci.2010.02.064 Qiu, 2009, Amphoteric ion exchange membrane synthesized by radiation-induced graft copolymerization of styrene and dimethylaminoethyl methacrylate into PVDF film for vanadium redox flow battery applications, J Membr Sci, 334, 9, 10.1016/j.memsci.2009.02.009 Chen, 2010, Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery, J Power Sources, 195, 7701, 10.1016/j.jpowsour.2010.05.026 Jossen, 2006, Advances in redox flow batteries Lide, 2007 Sum, 1985, A study of the V(II)/V(III) redox couple for redox flow cell applications, J Power Sources, 15, 179, 10.1016/0378-7753(85)80071-9 Sum, 1985, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, J Power Sources, 16, 85, 10.1016/0378-7753(85)80082-3 Skyllas-Kazacos, 1988 Skyllas-Kazacos, 1999, Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery, Electrochem Solid State Lett, 2, 121, 10.1149/1.1390754 Kazacos, 1989, Evaluation of carbon plastic electrodes in vanadium redox flow battery, J Electrochem Soc, 136, 2759, 10.1149/1.2097588 Skyllas-Kazacos, 2000 Skyllas-Kazacos, 1990, Vanadium redox cell electrolyte optimization studies, J Appl Electrochem, 20, 463, 10.1007/BF01076057 Remick, 1984 Price, 1999, A novel approach to utility scale energy storage, Power Eng J, 13, 122, 10.1049/pe:19990304 Morrissey, 2000, A new energy storage technology, Int J Ambient Energy, 21, 213, 10.1080/01430750.2000.9675376 Zito, 1997 Ge, 2004, Study of a high power density sodium polysulfide/bromine energy storage cell, J Appl Electrochem, 34, 181, 10.1023/B:JACH.0000009936.82613.ad Clarke, 2004 Leung, 2011, Characterization of a zinc–cerium flow battery, J Power Sources, 196, 5174, 10.1016/j.jpowsour.2011.01.095 Clarke, 2004 Wills, 2010, Developments in the soluble lead-acid flow battery, J Appl Electrochem, 40, 955, 10.1007/s10800-009-9815-4 Pletcher, 2004, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II) Part II: flow cell studies, Phys Chem Chem Phys, 6, 1779, 10.1039/b401116c Hazza, 2005, A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II): IV. The influence of additives, J Power Sources, 149, 103, 10.1016/j.jpowsour.2005.01.049 Pletcher, 2005, A novel flow battery-A lead acid battery based on an electrolyte with soluble lead(II): III. The influence of conditions on battery performance, J Power Sources, 149, 96, 10.1016/j.jpowsour.2005.01.048 Hazza, 2004, A novel flow battery: a lead acid battery based on an electrolyte with soluble lead(II): I. Preliminary studies, Phys Chem Chem Phys, 6, 1773, 10.1039/b401115e Swette L, Jalan V. NASA CR-174724, DOE/NASA/0262–271. 1984. Wu, 1986, Mass transfer and current distribution in a zinc/redox-battery flow cell, Indian J Tech, 24, 372 Dullien, 1992 Fetlawi, 2010, Modelling the effects of oxygen evolution in the all-vanadium redox flow battery, Electrochim Acta, 55, 3192, 10.1016/j.electacta.2009.12.085 Shah, 2010, Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery, Electrochim Acta, 55, 1125, 10.1016/j.electacta.2009.10.022 Wakao, 1974, A note on chromatographic parameter estimation, Chem Eng Jpn, 7, 438, 10.1252/jcej.7.438 Amiri, 1998, Transient analysis of incompressible flow through a packed bed, Int J Heat Mass Trans, 41, 4259, 10.1016/S0017-9310(98)00120-3 Fetlawi, 2009, Non-isothermal modelling of the all-vanadium redox flow battery, Electrochim Acta, 55, 78, 10.1016/j.electacta.2009.08.009 Bayanov, 2011, The numerical simulation of vanadium redox flow batteries, J Math Chem, 49, 2013, 10.1007/s10910-011-9872-x Li, 2008, A coupled dynamical model of redox flow battery based on chemical reaction, fluid flow, and electrical circuit, IEICE Trans Fundam, 91, 1741, 10.1093/ietfec/e91-a.7.1741 Schmal, 1986, Mass transfer at carbon fiber electrodes, J Appl Electrochem, 16, 422, 10.1007/BF01008853 Shah, 2010, A mathematical model for the soluble lead-acid flow battery, J Electrochem Soc, 157, A589, 10.1149/1.3328520 Scamman, 2009, Numerical modelling of a bromide–polysulphide redox flow battery. Part 1: modeling approach and validation for a pilot-scale system, J Power Sources, 189, 1220, 10.1016/j.jpowsour.2009.01.071 Fedkiw, 1984, A mathematical model for the Iron/Chromium redox battery, J Electrochem Soc, 131, 701, 10.1149/1.2115676 Miller, 1966, Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients lij for isothermal vector transport processes in binary electrolyte systems, J Phys Chem, 70, 2639, 10.1021/j100880a033 Buck, 1984, Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the Nernst-Planck equation applied to membrane systems, J Membr Sci, 17, 1, 10.1016/S0376-7388(00)81386-1 Gattrell, 2004, Study of the mechanism of the vanadium 4+/5+ redox reaction in acidic solutions, J Electrochem Soc, 151, A123, 10.1149/1.1630594 Meng, 2004, Electron transport in PEFCs, J Electrochem Soc, 151, A358, 10.1149/1.1641036 Teng, 2009, Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery, J Power Sources, 189, 1240, 10.1016/j.jpowsour.2008.12.040 Weber, 2004, Modeling transport in polymer-electrolyte fuel cells, Chem Rev, 104, 4679, 10.1021/cr020729l Bucciantini, 2010, Flows in porous media with erosion of the solid matrix, Netw Heterog Media, 5, 63, 10.3934/nhm.2010.5.63 Ingmanson, 1959, Internal pressure distributions in compressible mats under fluid stress, Tappi, 42, 840 Boomsma, 2002, The effects of compression and pore size variations on the liquid flow characteristics in metal foams, ASME J Fluids Eng, 124, 263, 10.1115/1.1429637 Tadrist, 2004, About the use of fibrous materials in compact heat exchangers, Exp Therm Fluid Sci, 28, 193, 10.1016/S0894-1777(03)00039-6 Young, 2005, Modeling of multi-component gas flows in capillaries and porous solids, Int J Heat Mass Trans, 48, 5338, 10.1016/j.ijheatmasstransfer.2005.07.034 Tang, 2005, Thermal boundary condition for the thermal lattice Boltzmann equation, Phys Rev E, 72, 056301, 10.1103/PhysRevE.72.056301 Despois, 2005, Permeability of open-pore microcellular materials, Acta Mater, 53, 1381, 10.1016/j.actamat.2004.11.031 Dukhan, 2006, Correlations for the pressure drop for flow through metal foam, Exp Fluids, 41, 665, 10.1007/s00348-006-0194-x Kitanidis, 1990, Effective hydraulic conductivity for gradually varying flow, Water Resour Res, 26, 1197, 10.1029/WR026i006p01197 White, 1987, Computing absolute transmissibility in the presence of fine-scale heterogeneity Durlofsky, 1991, Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, Water Resour Res, 27, 699, 10.1029/91WR00107 Torquato, 1990, Relationship between permeability and diffusion-controlled trapping constant of porous media, Phys Rev Lett, 64, 2644, 10.1103/PhysRevLett.64.2644 Avellaneda, 1991, Rigorous link between fluid permeability, electrical eonductivity, and relaxation times for transport in porous media, Phys Fluids A, 3, 2529, 10.1063/1.858194 Kostek, 1992, Fluid permeability in porous media: comparison of electrical estimates with hydrodynamical calculations, Phys Rev B, 45, 186, 10.1103/PhysRevB.45.186 Martys, 1992, Length scales relating the fluid permeability and electrical conductivity in random two-dimensional model porous media, Phys Rev B, 46, 6080, 10.1103/PhysRevB.46.6080 Straley, 1987, Magnetic resonance, digital image analysis, and permeability of porous media, Appl Phys Lett, 51, 1146, 10.1063/1.98766 Schwartz, 1993, Cross-property relations and permeability estimation in model porous media, Phys Rev E, 48, 4584, 10.1103/PhysRevE.48.4584 Verbrugge, 1990, Ion and solvent transport in ion-exchange membranes, J Electrochem Soc, 137, 886, 10.1149/1.2086573 Shah, 2008, A dynamic performance model for redox-flow batteries involving soluble species, Electrochim Acta, 53, 8087, 10.1016/j.electacta.2008.05.067 You, 2009, A simple model for the vanadium redox battery, Electrochim Acta, 54, 6827, 10.1016/j.electacta.2009.06.086 Vynnycky, 2011, Analysis of a model for the operation of a vanadium redox battery, Energy, 36, 2242, 10.1016/j.energy.2010.03.060 Luo, 2005, Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries, J Phys Chem B, 109, 20310, 10.1021/jp054092w Qiu, 2007, Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery, J Membr Sci, 297, 174, 10.1016/j.memsci.2007.03.042 Jia, 2012, A multilayered membrane for vanadium redox flow battery, J Power Sources, 203, 190, 10.1016/j.jpowsour.2011.10.102 Pant LM. MPhil Thesis. University of Alberta; 2011. Xu, 2013, Determination of the mass-transport properties of vanadium ions through the porous electrodes of vanadium redox flow batteries, Phys Chem Chem Phys, 15, 10841, 10.1039/c3cp51944a Xu Q. Ph.D Thesis. The Hong Kong University of Science and Technology; 2013. Mohammadi, 1997, Water transport study across commercial ion exchange membranes in the vanadium redox flow battery, J Membr Sci, 133, 151, 10.1016/S0376-7388(97)00092-6 Wiedemann, 1998, Sorption isotherms of vanadium with H3O+ ions in cation exchange membranes, J Membr Sci, 141, 207, 10.1016/S0376-7388(97)00307-4 Sukkar, 2003, Water transfer behaviour across cation exchange membranes in the vanadium redox battery, J Membr Sci, 222, 235, 10.1016/S0376-7388(03)00309-0 Sun, 2010, Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery, J Power Sources, 195, 890, 10.1016/j.jpowsour.2009.08.041 Tang, 2011, Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery, J Power Sources, 196, 10737, 10.1016/j.jpowsour.2011.09.003 Skyllas-Kazacos, 2012, Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery, J Membr Sci, 399, 43, 10.1016/j.memsci.2012.01.024 Tang, 2013, Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery, J Power Sources, 242, 314, 10.1016/j.jpowsour.2013.05.092 Knehr, 2012, A transient vanadium flow battery model incorporating vanadium crossover and water transport through the membrane, J Electrochem Soc, 159, A1446, 10.1149/2.017209jes Knehr, 2012, Role of convection and related effects on species crossover and capacity loss in vanadium redox flow batteries, Electrochem Commun, 23, 76, 10.1016/j.elecom.2012.07.008 Blanc C. Ph.D thesis. EPF Lausanne, Switzerland: 2009. Hu, 2003, Prediction of viscosity of mixed electrolyte solutions based on the Eyring's absolute rate theory and the semi-ideal hydration model, Electrochim Acta, 48, 1789, 10.1016/S0013-4686(03)00226-3 Hu, 2004, Prediction of viscosity of mixed electrolyte solutions based on the Eyring's absolute rate theory and the equations of Patwardhan and Kumar, Chem Eng Sci, 59, 2457, 10.1016/j.ces.2003.11.005 Xu, 2014, Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries, Appl Energy, 130, 139, 10.1016/j.apenergy.2014.05.034 Sarkar, 2011, Electroneutrality and ionic interactions in the modeling of mass transport in dilute electrochemical systems, Electrochim Acta, 56, 8969, 10.1016/j.electacta.2011.07.128 Qiu, 2012, 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery, Electrochim Acta, 64, 46, 10.1016/j.electacta.2011.12.065 Wang, 2006, Modeling fluid flow in fuel cells using the lattice-Boltzmann approach, Math Comput Simulat, 72, 242, 10.1016/j.matcom.2006.05.038 Joshi, 2007, Lattice Boltzmann modeling of 2D gas transport in a solid oxide fuel cell anode, J Power Sources, 164, 631, 10.1016/j.jpowsour.2006.10.101 Park, 2007, Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell, J Power Sources, 173, 404, 10.1016/j.jpowsour.2007.04.021 Hao, 2009, Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers, J Power Sources, 186, 104, 10.1016/j.jpowsour.2008.09.086 Schulz, 2007, Modeling of two-phase behaviour in the gas diffusion medium of PEFCs via full morphology approach-Fuel cells and energy conversion, J Electrochem Soc, 154, B419, 10.1149/1.2472547 Schladitz, 2006, Design of acoustic trim based on geometric modeling and flow simulation for non-woven, Comput Mater Sci, 38, 56, 10.1016/j.commatsci.2006.01.018 Van-Doormaal, 2009, Determination of permeability in fibrous porous media using the lattice Boltzmann method with application to PEM fuel cells, Int J Numer Meth Fluids, 59, 75, 10.1002/fld.1811 Kolyukhin, 2010, Numerical calculation of effective permeability by double randomization Monte Carlo method, Int J Numer Anal Model, 7, 607 Vijayakumar, 2011, Towards understanding the poor thermal stability of V5+ electrolyte solution in vanadium redox flow batteries, J Power Sources, 196, 3669, 10.1016/j.jpowsour.2010.11.126 Kausar, 2001, Raman spectroscopy studies of concentrated Vanadium (V) positive redox cell electrolytes, J Appl Electrochem, 31, 1327, 10.1023/A:1013870624722 Skyllas-Kazacos, 1996, Thermal stability of concentrated V(V) electrolytes in the Vanadium redox cell, J Electrochem Soc, 143, L86, 10.1149/1.1836609 Vijayakumar, 2012, Structure and stability of hexa-aqua V(III) cations in vanadium redox flow battery electrolytes, Phys Chem Chem Phys, 14, 10233, 10.1039/c2cp40707h Tang, 2012, Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery, J Power Sources, 216, 489, 10.1016/j.jpowsour.2012.06.052 Shah, 2011, A dynamic unit cell model for the all-vanadium flow battery batteries and energy storage, J Electrochem Soc, 158, A671, 10.1149/1.3561426 Tang, 2012, Thermal modelling and simulation of the all-vanadium redox flow battery, J Power Sources, 203, 165, 10.1016/j.jpowsour.2011.11.079 Ontiveros, 2014, Modeling of a vanadium redox flow battery for power system dynamic studies, Int J Hydrogen Energy, 39, 8720, 10.1016/j.ijhydene.2013.12.042 Blanc, 2010 Xu, 2013, Numerical investigations of flow field designs for vanadium redox flow batteries, Appl Energy, 105, 47, 10.1016/j.apenergy.2012.12.041 Yin, 2014, A coupled three dimensional model of vanadium redox flow battery for flow field designs, Energy, 74, 886, 10.1016/j.energy.2014.07.066 Scamman, 2009, Numerical modelling of a bromide-polysulphide redox flow battery. Part 2: evaluation of a utility-scale system, J Power Sources, 189, 1231, 10.1016/j.jpowsour.2009.01.076 Xing, 2011, Shunt current loss of the vanadium redox flow battery, J Power Sources, 196, 10753, 10.1016/j.jpowsour.2011.08.033 Codina, 1992, Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis, J Appl Electrochem, 22, 668, 10.1007/BF01092617