Electronic Structure of a Bi-Doped Σ = 13 Tilt Grain Boundary in ZnO

Interface Science - Tập 9 - Trang 143-148 - 2001
Johan M. Carlsson1, Helder S. Domingos2, Bo Hellsing1, Paul D. Bristowe2
1Experimental Physics, School of Physics and Engineering Physics, Chalmers and Göteborg University, Gothenburg, Sweden
2Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK

Tóm tắt

We have investigated Bi doping in the bulk and in a Σ = 13 tilt grain boundary in ZnO using ab-initio DFT-calculations. We obtain a negative segregation energy suggesting that bismuth accumulates in the grain boundary. The Bi-atom causes considerable atomic displacements in the grain boundary increasing the local Bi–O bond length and attracting an O-atom on the opposite side of the structural unit in the grain boundary. The results suggest the formation of a Bi–rich phase in the grain boundary. The Bi-atoms act as donors and the conduction electrons are quasi-localised in the grain boundary region.

Tài liệu tham khảo

F. Greuter and G. Blatter, Semicond. Sci. Technol. 5, 111 (1990). M. Matsuoka, Jpn. J. of Appl. Phys. 10, 736 (1971). W.G. Morris, J. Vac. Sci. Technol. 13, 926 (1976). P.R. Emtage, J. Appl. Phys. 48, 4372 (1977). G.D. Mahan, L. Levinson, and H. Philipp, J. Appl. Phys. 50, 2799 (1979). G. Blatter and F. Greuter, Phys. Rev. B 33, 3952 (1986). Y. Ohbuchi, T. Kawahara, Y. Okamoto, and J. Morimoto, Jpn. J. Appl. Phys. Part 1 40, 213 (2001). F. Oba, I. Tanaka, S. Nishitani, H. Adachi, B. Slater, and D. Gay, Phil. Mag. A 80, 1567 (2000). F. Oba, S. Nishitani, H. Adachi, I. Tanaka, M. Kohyama, and S. Tanaka, Phys. Rev. B 63, 045410 (2001). F. Oba, H. Adachi, and I. Tanaka, J. Mater. Res. 15, 2167 (2000). A. Kiselev, F. Sarrazit, E. Stepantsov, E. Olsson, T. Claeson, V. Bondarenko, R. Pond, and N. Kiselev, Phil. Mag. A 76, 633 (1997). F. Sarrazit, R. Pond, and N. Kiselev, Phil. Mag. Lett. 77, 191 (1998). J.M. Carlsson, B. Hellsing, H.S. Domingos, and P. Bristowe, J. Phys. Cond. Mat. 13, 9937 (2001). K. Kobayashi, O. Wada, M. Kobayashi, and Y. Takada, J. Am. Ceram. Soc. 81, 2071 (1998). J. Tanimura, O. Wada, H. Kurikawa, N. Furuse, and M. Kobayashi, Jpn. J. Appl. Phys. Part 1 39, 4493 (2000). A. Sutton and R. Balluffi, Interfaces in Crystalline Materials, (Oxford University Press, Oxford, 1995). J. Gale, J. Chem. Soc., Farad. Trans. 93, 629 (1997). M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992). B. Hammer, L. Bengtsson, and L. Hansen, Computer code Dacapo-1.30, Center for Atomic Scale and Materials Physics, Danmarks Tekniske Universitet, Lyngby, Denmark. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965). J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, and C. Fiolhais, Phys. Rev. B 46, A6671 (1992). D. Vanderbildt, Phys. Rev. B 41, 7892 (1990). H. Monkhorst and J. Pack, Phys. Rev. B 12, 5188 (1976). H. Harwig, Z. Anorg. Allg. Chem. 444, 151 (1978). J.R. Lee, Y.M. Chiang, and G. Ceder, Acta Mater. 45, 1247 (1997).