Molten salt bubble columns for low-carbon hydrogen from CH4 pyrolysis: Mass transfer and carbon formation mechanisms

Chemical Engineering Journal - Tập 417 - Trang 127407 - 2021
Brett Parkinson1, Clemens F. Patzschke1, Dimitrios Nikolis1, Sumathy Raman2, Klaus Hellgardt1
1Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
2ExxonMobil Research & Engineering, 1545 Route 22 East, Annandale, NJ 0880, USA

Tài liệu tham khảo

Petroleum, B.J.B.L., UK, BP Statistical Review of World Energy Report. 2019. Mahajan, D., C.E. Taylor, and G.A. Mansoori, An introduction to natural gas hydrate/clathrate: The major organic carbon reserve of the Earth. 2007, Elsevier. CHANGE, I.P.O.C., IPCC Fifth Assessment Synthesis Report—Climate Change 2014 Synthesis Report (edited by Core Writing Team, RK Pachauri and L. Meyer), Geneva, Switzerland. 2014. Muradov, 2008, “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies, Int. J. Hydrogen Energy, 33, 6804, 10.1016/j.ijhydene.2008.08.054 Ball, 2015, The hydrogen economy–vision or reality?, Int. J. Hydrogen Energy, 40, 7903, 10.1016/j.ijhydene.2015.04.032 Council, H., Hydrogen scaling up - A sustainable pathway for the global energy transition. 2017. Bakenne, 2016, Sankey-Diagram-based insights into the hydrogen economy of today, Int. J. Hydrogen Energy, 41, 7744, 10.1016/j.ijhydene.2015.12.216 Abnades, 2013, Thermal cracking of methane into Hydrogen for a CO2-free utilization of natural gas, Int. J. Hydrogen Energy, 38, 8491, 10.1016/j.ijhydene.2012.08.138 Muradov, 2017, Low to near-zero CO2 production of hydrogen from fossil fuels: status and perspectives, Int. J. Hydrogen Energy, 42, 14058, 10.1016/j.ijhydene.2017.04.101 Muradov, 2013, Decarbonization at crossroads: the cessation of the positive historical trend or a temporary detour?, Energy Environ. Sci., 6, 1060, 10.1039/c3ee22879g Parkinson, B., et al., Levelized cost of CO 2 mitigation from hydrogen production routes. 2019. 12(1): p. 19-40. Holmen, 1995, Pyrolysis of natural gas: chemistry and process concepts, J. Fuel Process. Technol., 42, 249, 10.1016/0378-3820(94)00109-7 Dagle, R.A., et al., An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products. 2017, Pacific Northwest National Lab.(PNNL), Richland, WA (United States); Argonne …. Guisnet, 2001, Organic chemistry of coke formation, J. Appl. Catal. A General, 212, 83, 10.1016/S0926-860X(00)00845-0 Farmer, 2019, Membrane bubble column reactor model for the production of hydrogen by methane pyrolysis, Int. J. Hydrogen Energy, 44, 14721, 10.1016/j.ijhydene.2019.03.023 Geißler, 2016, Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed, Chem. Eng. J., 299, 192, 10.1016/j.cej.2016.04.066 Geißler, 2015, Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed, Int. J. Hydrogen Energy, 40, 14134, 10.1016/j.ijhydene.2015.08.102 Lewis, 2001 Muradov, 1998, CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel, Energy Fuels, 12, 41, 10.1021/ef9701145 Palmer, 2019, Methane pyrolysis with a molten Cu–Bi alloy catalyst, ACS Catal., 9, 8337, 10.1021/acscatal.9b01833 Parkinson, 2017, Techno-economic analysis of methane pyrolysis in molten metals: decarbonizing natural gas, Chem. Eng. Technol., 40, 1022, 10.1002/ceat.201600414 Parra, 2017, Molten metal capillary reactor for the high-temperature pyrolysis of methane, Int. J. Hydrogen Energy, 42, 13641, 10.1016/j.ijhydene.2016.12.044 Rahimi, 2019, Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts, Carbon, 151, 181, 10.1016/j.carbon.2019.05.041 Serban, 2003, Hydrogen production by direct contact pyrolysis of natural gas, Energy Fuels, 17, 705, 10.1021/ef020271q Parkinson, B., et al., Techno‐economic analysis of methane pyrolysis in molten metals: decarbonizing natural gas. 2017. 40(6): p. 1022-1030. Kang, 2019, Catalytic methane pyrolysis in molten MnCl2-KCl, Appl. Catal. B, 254, 659, 10.1016/j.apcatb.2019.05.026 Tanemoto, 1975, Raman spectra of the molten MnCl2–KCl SYSTEM, J. Chem. Lett., 4, 351, 10.1246/cl.1975.351 Kucharski, 1974, Electrical conductivities and molar volumes in the binary systems MnCl2-LiCl, MnCl2-NaCl, MnCl2-KCl, MnCl2-RbCl, MnCl2-CsCl, J. Electrochem. Soc., 121, 1298, 10.1149/1.2401672 Parkinson, 2021, Methane pyrolysis in monovalent alkali halide salts: kinetics and pyrolytic carbon properties, Int. J. Hydrog. Energy., 46, 6225, 10.1016/j.ijhydene.2020.11.150 Bale, C.W., et al., FactSage thermochemical software and databases. 2002. 26(2): p. 189-228. Keipi, 2016, Thermo-catalytic decomposition of methane: the effect of reaction parameters on process design and the utilization possibilities of the produced carbon, J. Energy Conv. Manage., 126, 923, 10.1016/j.enconman.2016.08.060 Farmer, T.C., E.W. McFarland, and M.F.J.I.J.o.H.E. Doherty, Membrane bubble column reactor model for the production of hydrogen by methane pyrolysis. 2019. 44(29): p. 14721-14731. Catalan, 2020, Coupled hydrodynamic and kinetic model of liquid metal bubble reactor for hydrogen production by noncatalytic thermal decomposition of methane, Int. J. Hydrogen Energy, 45, 2486, 10.1016/j.ijhydene.2019.11.143 Napier, 1972, Pyrolysis of methane in a single pulse shock tube, J. Appl. Chem. Biotechnol., 22, 303, 10.1002/jctb.5020220303 Upham, 2017, Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon, Science, 358, 917, 10.1126/science.aao5023 Haynes, W.J.C.H.o.C. and Physics, Density of molten elements and representative salts. 2012. Sun, 2020, A non-invasive differential pressure technique for bubble characterization in high-temperature opaque systems, Ind. Eng. Chem. Res. Palmer, 1963, The activation energy for the pyrolysis of methane1, J. Phys. Chem., 67, 709, 10.1021/j100797a502 Davidson, J., Fluidized particles, in Mobile Particulate Systems. 1995, Springer. p. 173–196. Davidson, 1960, Bubble formation at an orifice in an inviscid liquid, Trans. Inst. Chem. Eng., 38, 335 Gaddis, 1986, Bubble formation in quiescent liquids under constant flow conditions, J. Chem. Eng. Sci., 41, 97, 10.1016/0009-2509(86)85202-2 Jamialahmadi, 2001, Study of bubble formation under constant flow conditions, J. Chem. Eng. Res. Design, 79, 523, 10.1205/02638760152424299 Fan, L.-S., et al., Bubbles in nanofluids. 2007. 46(12): p. 4341-4346. Vafaei, 2015, Modification of the Young-Laplace equation and prediction of bubble interface in the presence of nanoparticles, J. Adv. Colloid Interface Sci., 225, 1, 10.1016/j.cis.2015.07.006 Alper, 1980, Gas absorption mechanism in catalytic slurry reactors, J. Chem. Eng. Sci., 35, 217, 10.1016/0009-2509(80)80090-X Deckwer, 1992, Vol. 200 Wassilkowska, A., et al., An analysis of the elemental composition of micro-samples using EDS technique. 2014. 2014(Chemia Zeszyt 1-Ch (18) 2014): p. 133-148. Lee, 2004, Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst, Catal. Today, 93, 81, 10.1016/j.cattod.2004.06.080 Parkinson, 2018, Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals, Int. J. Hydrogen Energy, 43, 2540, 10.1016/j.ijhydene.2017.12.081 Rahimi, N., et al., Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts. 2019. 151: p. 181–191. Al-Qahtani, 2020, Uncovering the true cost of hydrogen production routes using life cycle monetisation, Appl. Energy, 281, 115958, 10.1016/j.apenergy.2020.115958