Application of Poisson kriging to the mapping of cholera and dysentery incidence in an endemic area of Bangladesh

Springer Science and Business Media LLC - Tập 5 - Trang 1-11 - 2006
Mohammad Ali1, Pierre Goovaerts2, Nushrat Nazia3, M Zahirul Haq4, Mohammad Yunus4, Michael Emch5
1International Vaccine Institute,, Kwanak-gu,, Korea
2BioMedware Inc., Ann Arbor, USA
3University of Texas at Dallas,, USA
4ICDDR, B:Centre for Health and Population Research, Dhaka, Bangladesh
5University of North Carolina at Chapel Hilll,, USA

Tóm tắt

Disease maps can serve to display incidence rates geographically, to inform on public health provision about the success or failure of interventions, and to make hypothesis or to provide evidences concerning disease etiology. Poisson kriging was recently introduced to filter the noise attached to rates recorded over sparsely populated administrative units. Its benefit over simple population-weighted averages and empirical Bayesian smoothers was demonstrated by simulation studies using county-level cancer mortality rates. This paper presents the first application of Poisson kriging to the spatial interpolation of local disease rates, resulting in continuous maps of disease rate estimates and the associated prediction variance. The methodology is illustrated using cholera and dysentery data collected in a cholera endemic area (Matlab) of Bangladesh. The spatial analysis was confined to patrilineally-related clusters of households, known as baris, located within 9 kilometers from the Matlab hospital to avoid underestimating the risk of disease incidence, since patients far away from the medical facilities are less likely to travel. Semivariogram models reveal a range of autocorrelation of 1.1 km for dysentery and 0.37 km for cholera. This result translates into a cholera risk map that is patchier than the dysentery map that shows a large zone of high incidence in the south-central part of the study area, which is quasi-urban. On both maps, lower risk values are found in the Northern part of the study area, which is also the most distant from the Matlab hospital. The weaker spatial continuity of cholera versus dysentery incidence rates resulted in larger kriging variance across the study area. The approach presented in this paper enables researchers to incorporate the pattern of spatial dependence of incidence rates into the mapping of risk values and the quantification of the associated uncertainty. Differences in spatial patterns, in particular the range of spatial autocorrelation, reflect differences in the mode of transmission of cholera and dysentery. Our risk maps for cholera and dysentery incidences should help identifying putative factors of increased disease incidence, leading to more effective prevention and remedial actions in endemic areas.

Tài liệu tham khảo

Kelsall J, Wakefield J: Modeling spatial variation in disease risk: a geostatistical approach. Journal of the American Statistical Association. 2002, 97 (459): 692-701. 10.1198/016214502388618438. Kulldroff M: A spatial scan statistics. Communications in Statistics: Theory and Methods. 1997, 26: 1481-1496. Bithell JF: A classification of disease mapping methods. Stat Med. 2000, 19 (17–18): 2203-2215. 10.1002/1097-0258(20000915/30)19:17/18<2203::AID-SIM564>3.0.CO;2-U. Diggle PJ: Overview of statistical methods for disease mapping and its relationship to cluster detection. In Spatial Epidemiology: Methods and Applications. Edited by: Elliot P, Wakefield JC, Best NG, Briggs DJ. 2000, Oxford: Oxford University Press Lawson AB: Disease map reconstruction. Stat Med. 2001, 20 (14): 2183-204. 10.1002/sim.933. Lawson AB, Clark A: Spatial mixture relative risk models applied to disease mapping. Stat Med. 2002, 21 (3): 359-70. 10.1002/sim.1022. Wakefield J, Salway R: A statistical framework for ecological and aggregate studies. Journal of Royal Statistical Society, Series A. 2001, 164: 119-137. Gunnlaugsson G, Angulo FJ, Einarsdottir J, Passa A, Tauxe RV: Epidemic cholera in Guinea-Bissau: the challenge of preventing deaths in rural West Africa. Int J Infect Dis. 2000, 4 (1): 8-13. 10.1016/S1201-9712(00)90059-6. La Raja M: Cholera-like diarrhoeal disease and rivers in rural Mozambique. Trop Doct. 2000, 30 (1): 53-4. Germani Y, Quilici ML, Glaziou P, Mattera D, Morvan J, Fournier JM: Emergence of cholera in the Central African Republic. Eur J Clin Microbiol Infect Dis. 1998, 17 (12): 888-890. 10.1007/s100960050217. Glass RI, Becker S, Huq MI, Stoll BJ, Khan MU, Merson MH, Lee JV, Black RE: Endemic cholera in rural Bangladesh, 1966–1980. Am J Epidemiol. 1982, 116 (6): 959-70. Burrows W: Textbook of Microbiology. 1979, Philadelphia: Saunders Glass RI, Black RE: The epidemiology of cholera. Cholera. Edited by: Barua D, Greenough III W. 1992, New York: Plenum Medical Company, 129-54. World Health Organization: Cholera today. A new look at an old disease. WHO Features. 1987, 107: 1-3. Blake PA: Cholera: a possible endemic focus in the United States. N Engl J Med. 1980, 302: 305-09. Salmaso S, Greco D, Bonfiglio B, Castellani-Pastoris M, De Felip G, Bracciotti A, Sitzia G, Congiu A, Piu G, Angioni G, Barra L, Zampieri A, Baine WB: Recurrence of Pelecypod-associated cholera in Sardinia. Lancet. 1980, 2 (8204): 1124-1127. 10.1016/S0140-6736(80)92553-2. Emch M: Diarrheal disease risk in Matlab, Bangladesh. Social Science & Medicine. 1999, 49: 519-530. 10.1016/S0277-9536(99)00146-X. Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris GJ, Khan MNH, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR: Critical Factors Influencing the Occurrence of Vibrio cholerae in the Environment of Bangladesh. Appl Envir Microbiol. 2005, 71 (8): 4645-4654. 10.1128/AEM.71.8.4645-4654.2005. Webster R, Oliver MA, Munir KR, Mann JR: Kriging the local risk of a rare disease from a register of diagnoses. Geographical Analysis. 1994, 26 (2): 168-185. Carrat F, Valleron AJ: Epidemiologic mapping using the "kriging" method: application to an influenza-like illness epidemic in France. Am J Epidemiol. 1992, 135 (11): 1293-1300. Goovaerts P: Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging. Int J Health Geogr. 2005, 4: 31-10.1186/1476-072X-4-31. Goovaerts P: Geostatistical analysis of disease data: visualization and propagation of spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation. Int J Health Geogr. 2006, 5: 7-10.1186/1476-072X-5-7. Monestiez P, Dubroca L, Bonnin E, Durbec JP, Guinet C: Geostatistical modelling of spatial distribution of Balenoptera physalus in the northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts. Ecological Modelling. 2006, 193: 615-628. 10.1016/j.ecolmodel.2005.08.042. Rashid ER: Geography of Bangladesh. 1991, University Press Limited, Dhaka, Bangladesh Hall AJ: An evaluation of the effectiveness and impact of Bangladesh's Chandpur Flood Control and Irrigation Project. Doctoral Thesis. 1988, Department of Agriculture, University College of North Wales, Bangor, United Kingdom Ali M, Emch M, Ashley C, Streatfield PK: Implementation of a medical geographic information system: concepts and uses. J Health Popul Nutr. 2001, 19 (2): 100-110. Koenig MA, Fauveau V, Chowdhury AI, Chakraborty J, Khan MA: Maternal mortality in Matlab, Bangladesh: 1976–85. Studies in Family Planning. 1988, 19 (2): 69-80. 10.2307/1966492. D'Souza S: A population laboratory for studying disease processes and mortality-the demographic surveillance system, Matlab, Bangladesh. Special Publication No. 13, ICDDR,B, Dhaka, Bangladesh. 1981 Phillips JF, Simmons R, Koneig MA, Chakraborty J: Determinants of reproductive change in a traditional society: evidence from Matlab, Bangladesh. Studies in Family Planning. 1988, 19 (6): 313-334. 10.2307/1966627. Berke O: Exploratory spatial relative risk mapping. Preventive Veterinary Medicine. 2005, 71: 173-182. 10.1016/j.prevetmed.2005.07.003.