Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding
Tài liệu tham khảo
Yeni, 2008, Fracture analysis of laser beam welded superalloys Inconel 718 and 625 using the FITNET procedure, Int. J. Press. Vessel. Pip., 85, 532, 10.1016/j.ijpvp.2008.02.004
Cooper, 2015, Design and manufacture of high performance hollow engine valves by additive layer manufacturing, Mater. Des., 69, 44, 10.1016/j.matdes.2014.11.017
Dinda, 2009, Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability, Mater. Sci. Eng. A, 509, 98, 10.1016/j.msea.2009.01.009
Shankar, 2001, Microstructure and mechanical properties of Inconel 625 superalloy, J. Nucl. Mater., 228, 222, 10.1016/S0022-3115(00)00723-6
Rombouts, 2012, Laser metal deposition of Inconel 625: microstructure and mechanical properties, J. Laser Appl., 24, 2575, 10.2351/1.4757717
Ganesh, 2010, Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures, Mater. Sci. Eng. A, 527, 7490, 10.1016/j.msea.2010.08.034
Ma, 2015, The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding, Mater. Sci. Eng. A, 631, 230, 10.1016/j.msea.2015.02.051
Kuo, 2009, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Mater. Sci. Eng. A, 510, 289, 10.1016/j.msea.2008.04.097
Everton, 2016, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Mater. Des., 95, 431, 10.1016/j.matdes.2016.01.099
Frazier, 2014, Metal additive manufacturing: a review, J. Mater. Eng. Perform., 26, 1917, 10.1007/s11665-014-0958-z
Li, 2014, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des., 63, 856, 10.1016/j.matdes.2014.07.006
ASTM-International, ASTM Standard F2792-12a: Standard Terminology for Additive Manufacturing Technologies, 2012.
Ivanova, 2013, Additive manufacturing (AM) and nanotechnology: promises and challenges, Rapid Prototyp. J., 19, 353, 10.1108/RPJ-12-2011-0127
Monzón, 2015, Standardization in additive manufacturing: activities carried out by international organizations and projects, Int. J. Adv. Manuf. Technol., 76, 1111, 10.1007/s00170-014-6334-1
Bikas, 2015, Additive manufacturing methods and modelling approaches: a critical review, Int. J. Adv. Manuf. Technol., 83, 389, 10.1007/s00170-015-7576-2
Baufeld, 2010, Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties, Mater. Des., 31, S106, 10.1016/j.matdes.2009.11.032
Thompson, 2015, Additive manufacturing of heat exchangers: a case study on a multi-layered Ti–6Al–4V oscillating heat pipe, Addit. Manuf., 8, 163, 10.1016/j.addma.2015.09.003
Gonzalez, 2016, Characterization of ceramic components fabricated using binder jetting additive manufacturing technology, Ceram. Int., 42, 10559, 10.1016/j.ceramint.2016.03.079
Wolcott, 2016, Process improvements and characterization of ultrasonic additive manufactured structures, J. Mater. Process. Technol., 233, 44, 10.1016/j.jmatprotec.2016.02.009
Sridharan, 2016, Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing, Scr. Mater., 117, 1, 10.1016/j.scriptamat.2016.02.013
Wang, 2016, Spatial and geometrical-based characterization of microstructure and microhardness for an electron beam melted Ti–6Al–4V component, Mater. Des., 95, 287, 10.1016/j.matdes.2016.01.093
Hinojos, 2016, Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology, Mater. Des., 94, 17, 10.1016/j.matdes.2016.01.041
Wanjara, 2007, Electron beam freeforming of stainless steel using solid wire feed, Mater. Des., 28, 2278, 10.1016/j.matdes.2006.08.008
Farshidianfar, 2016, Effect of real-time cooling rate on microstructure in laser additive manufacturing, J. Mater. Process. Technol., 231, 468, 10.1016/j.jmatprotec.2016.01.017
Wang, 2012, Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology, Int. J. Adv. Manuf. Technol., 58, 545, 10.1007/s00170-011-3423-2
Zhang, 2014, Tensile properties of laser additive manufactured Inconel 718 using filler wire, J. Mater. Res., 29, 2006, 10.1557/jmr.2014.199
Li, 2015, Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting, J. Mater. Sci. Technol., 31, 946, 10.1016/j.jmst.2014.09.020
Lin, 2016, Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing, Mater. Des., 102, 30, 10.1016/j.matdes.2016.04.018
Xu, 2013, Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process, J. Mater. Sci. Technol., 29, 480, 10.1016/j.jmst.2013.02.010
Jhavar, 2014, Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications, J. Mater. Process. Technol., 214, 1102, 10.1016/j.jmatprotec.2013.12.016
Katou, 2007, Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding, Mater. Des., 28, 2093, 10.1016/j.matdes.2006.05.024
Baufeld, 2012, Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD), J. Mater. Eng. Perform., 21, 1416, 10.1007/s11665-011-0009-y
Jandric, 2004, Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition, Int. J. Mach. Tools Manuf., 44, 785, 10.1016/j.ijmachtools.2004.01.009
Akula, 2006, Hybrid adaptive layer manufacturing: an intelligent art of direct metal rapid tooling process, Robot. Comput.-Integr. Manuf., 22, 113, 10.1016/j.rcim.2005.02.006
Clark, 2008, Shaped metal deposition of a nickel alloy for aero engine applications, J. Mater. Process. Technol., 203, 439, 10.1016/j.jmatprotec.2007.10.051
Zhao, 2011, A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping, J. Mater. Process. Technol., 211, 488, 10.1016/j.jmatprotec.2010.11.002
Trosch, 2016, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting, Mater. Lett., 164, 428, 10.1016/j.matlet.2015.10.136
Suryakumar, 2011, Weld bead modeling and process optimization in hybrid layered manufacturing, Comput. Aided Des., 43, 331, 10.1016/j.cad.2011.01.006
Thivillon, 2009, Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components, J. Nucl. Mater., 385, 236, 10.1016/j.jnucmat.2008.11.023
Xing, 2014, The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal, J. Alloy. Compd., 593, 110, 10.1016/j.jallcom.2013.12.224
Qi, 2009, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718, Metall. Mater. Trans. A, 44, 2410, 10.1007/s11661-009-9949-3
Zhong, 2016, Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition, Mater. Des., 98, 128, 10.1016/j.matdes.2016.03.006
Dupont, 2009, 193
Amato, 2012, Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron beam melting, J. Mater. Sci. Res., 1, 435
Xu, 2013, Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition, Mater. Des., 45, 446, 10.1016/j.matdes.2012.07.013
Brandl, 2011, Deposition of Ti–6Al–4V using laser and wire, (part I): microstructural properties of single beads, Surf. Coat. Technol., 206, 1120, 10.1016/j.surfcoat.2011.07.095
Xue, 2000, Free-form laser consolidation for producing metallurgically sound and functional components, J. Laser Appl., 12, 160, 10.2351/1.521927
Ram, 2005, Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds, J. Mater. Process. Technol., 167, 73, 10.1016/j.jmatprotec.2004.09.081
Xu, 2009, Microstructure evolution in laser solid forming of Ti–50wt% Ni alloy, J. Alloy. Compd., 480, 782, 10.1016/j.jallcom.2009.02.056
Yan, 2002, Computational simulation of microstructure of K4169 superalloy during solidification process, Spec. Cast. Nonferrous Alloy., 4, 26
Kurz, 1992