Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding

Materials Science and Engineering: A - Tập 676 - Trang 395-405 - 2016
J.F. Wang1,2, Q.J. Sun1,2, H. Wang1, J.P. Liu2,3, J.C. Feng1,2
1State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
2Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
3China Nuclear Industry 23 Construction Co., Ltd., Beijing 101300, China

Tài liệu tham khảo

Yeni, 2008, Fracture analysis of laser beam welded superalloys Inconel 718 and 625 using the FITNET procedure, Int. J. Press. Vessel. Pip., 85, 532, 10.1016/j.ijpvp.2008.02.004 Cooper, 2015, Design and manufacture of high performance hollow engine valves by additive layer manufacturing, Mater. Des., 69, 44, 10.1016/j.matdes.2014.11.017 Dinda, 2009, Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability, Mater. Sci. Eng. A, 509, 98, 10.1016/j.msea.2009.01.009 Shankar, 2001, Microstructure and mechanical properties of Inconel 625 superalloy, J. Nucl. Mater., 228, 222, 10.1016/S0022-3115(00)00723-6 Rombouts, 2012, Laser metal deposition of Inconel 625: microstructure and mechanical properties, J. Laser Appl., 24, 2575, 10.2351/1.4757717 Ganesh, 2010, Fatigue and fracture toughness characteristics of laser rapid manufactured Inconel 625 structures, Mater. Sci. Eng. A, 527, 7490, 10.1016/j.msea.2010.08.034 Ma, 2015, The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding, Mater. Sci. Eng. A, 631, 230, 10.1016/j.msea.2015.02.051 Kuo, 2009, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Mater. Sci. Eng. A, 510, 289, 10.1016/j.msea.2008.04.097 Everton, 2016, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Mater. Des., 95, 431, 10.1016/j.matdes.2016.01.099 Frazier, 2014, Metal additive manufacturing: a review, J. Mater. Eng. Perform., 26, 1917, 10.1007/s11665-014-0958-z Li, 2014, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater. Des., 63, 856, 10.1016/j.matdes.2014.07.006 ASTM-International, ASTM Standard F2792-12a: Standard Terminology for Additive Manufacturing Technologies, 2012. Ivanova, 2013, Additive manufacturing (AM) and nanotechnology: promises and challenges, Rapid Prototyp. J., 19, 353, 10.1108/RPJ-12-2011-0127 Monzón, 2015, Standardization in additive manufacturing: activities carried out by international organizations and projects, Int. J. Adv. Manuf. Technol., 76, 1111, 10.1007/s00170-014-6334-1 Bikas, 2015, Additive manufacturing methods and modelling approaches: a critical review, Int. J. Adv. Manuf. Technol., 83, 389, 10.1007/s00170-015-7576-2 Baufeld, 2010, Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties, Mater. Des., 31, S106, 10.1016/j.matdes.2009.11.032 Thompson, 2015, Additive manufacturing of heat exchangers: a case study on a multi-layered Ti–6Al–4V oscillating heat pipe, Addit. Manuf., 8, 163, 10.1016/j.addma.2015.09.003 Gonzalez, 2016, Characterization of ceramic components fabricated using binder jetting additive manufacturing technology, Ceram. Int., 42, 10559, 10.1016/j.ceramint.2016.03.079 Wolcott, 2016, Process improvements and characterization of ultrasonic additive manufactured structures, J. Mater. Process. Technol., 233, 44, 10.1016/j.jmatprotec.2016.02.009 Sridharan, 2016, Microstructure and texture evolution in aluminum and commercially pure titanium dissimilar welds fabricated using ultrasonic additive manufacturing, Scr. Mater., 117, 1, 10.1016/j.scriptamat.2016.02.013 Wang, 2016, Spatial and geometrical-based characterization of microstructure and microhardness for an electron beam melted Ti–6Al–4V component, Mater. Des., 95, 287, 10.1016/j.matdes.2016.01.093 Hinojos, 2016, Joining of Inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology, Mater. Des., 94, 17, 10.1016/j.matdes.2016.01.041 Wanjara, 2007, Electron beam freeforming of stainless steel using solid wire feed, Mater. Des., 28, 2278, 10.1016/j.matdes.2006.08.008 Farshidianfar, 2016, Effect of real-time cooling rate on microstructure in laser additive manufacturing, J. Mater. Process. Technol., 231, 468, 10.1016/j.jmatprotec.2016.01.017 Wang, 2012, Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology, Int. J. Adv. Manuf. Technol., 58, 545, 10.1007/s00170-011-3423-2 Zhang, 2014, Tensile properties of laser additive manufactured Inconel 718 using filler wire, J. Mater. Res., 29, 2006, 10.1557/jmr.2014.199 Li, 2015, Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting, J. Mater. Sci. Technol., 31, 946, 10.1016/j.jmst.2014.09.020 Lin, 2016, Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing, Mater. Des., 102, 30, 10.1016/j.matdes.2016.04.018 Xu, 2013, Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process, J. Mater. Sci. Technol., 29, 480, 10.1016/j.jmst.2013.02.010 Jhavar, 2014, Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications, J. Mater. Process. Technol., 214, 1102, 10.1016/j.jmatprotec.2013.12.016 Katou, 2007, Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding, Mater. Des., 28, 2093, 10.1016/j.matdes.2006.05.024 Baufeld, 2012, Mechanical properties of Inconel 718 parts manufactured by shaped metal deposition (SMD), J. Mater. Eng. Perform., 21, 1416, 10.1007/s11665-011-0009-y Jandric, 2004, Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition, Int. J. Mach. Tools Manuf., 44, 785, 10.1016/j.ijmachtools.2004.01.009 Akula, 2006, Hybrid adaptive layer manufacturing: an intelligent art of direct metal rapid tooling process, Robot. Comput.-Integr. Manuf., 22, 113, 10.1016/j.rcim.2005.02.006 Clark, 2008, Shaped metal deposition of a nickel alloy for aero engine applications, J. Mater. Process. Technol., 203, 439, 10.1016/j.jmatprotec.2007.10.051 Zhao, 2011, A 3D dynamic analysis of thermal behavior during single-pass multi-layer weld-based rapid prototyping, J. Mater. Process. Technol., 211, 488, 10.1016/j.jmatprotec.2010.11.002 Trosch, 2016, Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting, Mater. Lett., 164, 428, 10.1016/j.matlet.2015.10.136 Suryakumar, 2011, Weld bead modeling and process optimization in hybrid layered manufacturing, Comput. Aided Des., 43, 331, 10.1016/j.cad.2011.01.006 Thivillon, 2009, Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components, J. Nucl. Mater., 385, 236, 10.1016/j.jnucmat.2008.11.023 Xing, 2014, The effect of post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal, J. Alloy. Compd., 593, 110, 10.1016/j.jallcom.2013.12.224 Qi, 2009, Studies of standard heat treatment effects on microstructure and mechanical properties of laser net shape manufactured Inconel 718, Metall. Mater. Trans. A, 44, 2410, 10.1007/s11661-009-9949-3 Zhong, 2016, Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition, Mater. Des., 98, 128, 10.1016/j.matdes.2016.03.006 Dupont, 2009, 193 Amato, 2012, Comparison of microstructures and properties for a Ni-base superalloy (alloy 625) fabricated by electron beam melting, J. Mater. Sci. Res., 1, 435 Xu, 2013, Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition, Mater. Des., 45, 446, 10.1016/j.matdes.2012.07.013 Brandl, 2011, Deposition of Ti–6Al–4V using laser and wire, (part I): microstructural properties of single beads, Surf. Coat. Technol., 206, 1120, 10.1016/j.surfcoat.2011.07.095 Xue, 2000, Free-form laser consolidation for producing metallurgically sound and functional components, J. Laser Appl., 12, 160, 10.2351/1.521927 Ram, 2005, Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds, J. Mater. Process. Technol., 167, 73, 10.1016/j.jmatprotec.2004.09.081 Xu, 2009, Microstructure evolution in laser solid forming of Ti–50wt% Ni alloy, J. Alloy. Compd., 480, 782, 10.1016/j.jallcom.2009.02.056 Yan, 2002, Computational simulation of microstructure of K4169 superalloy during solidification process, Spec. Cast. Nonferrous Alloy., 4, 26 Kurz, 1992