An efficient algorithm to solve a multi-objective robust aggregate production planning in an uncertain environment

Seyed Mohamad Javad Mirzapour Al-e-Hashem1, Mir Bahador Aryanezhad1, Seyed Jafar Sadjadi1
1Department of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

Tóm tắt

Risk is inherent in most economic activities. This is especially true of production activities where results of decisions made today may have many possible different outcomes depending on future events. Since companies cannot usually protect themselves completely against risk, they have to manage it. In this paper, we present a multi-objective model to deal with a multi-period multi-product multi-site aggregate production planning problem for a medium-term planning horizon under uncertainty. The first objective function attempts to minimize sum of the expected value and the variability of total costs with reference to inventory levels, regular, overtime and subcontracting levels, backordering levels, and labor, machine and warehouse capacities. The second objective function highlighted the concept of customer service level through minimizing the expected value of maximum shortages among all customers’ zones from which the variability of that is conducted. The last objective function aims to maximize workers productivity, a weighted average of productivity levels in all factories and in all periods which is weighted by the number of k-level labors. Then, we use an efficient algorithm that is a combination of an augmented ε-constraint method and genetic algorithm to solve our proposed model. The results demonstrate the practicability of the proposed multi-objective stochastic model as well as the proposed algorithm.

Tài liệu tham khảo

Manzini R, Gamberi M, Regattieri A (2006) Applying mixed integer programming to the design of a distribution logistic network. Int J Ind EngTheory Appl Pract 13(2):207–218 Manzini R, Gamberi M, Gebennini E, Regattieri A (2008) An integrated approach to the design and management of supply chain system. Int J Adv Manuf Technol 37:625–640 Shi Y, Haase C (1996) Optimal trade-offs of aggregate production planning with multiple objective and multi-capacity demand levels. Int J Oper Quant Manage 2(2):127–143 Hanssman F, Hess S (1960) A linear programming approach to production and employment scheduling. Manage Technol 1(1):46–51 Haehling LC (1970) Production and employment scheduling in multi-stage production systems. Nav Res Logist Q 17(2):193–198 Goodman DA (1974) A goal programming approach to aggregate planning of production and work force. Manage Sci 20(12):1569–1575 Masoud ASM, Hwang CL (1980) An aggregate production planning model and application of three multiple objective decision methods. Int J Prod Res 18:741–752 Nam SJ, Logendran R (1992) Aggregate production planning—a survey of models and methodologies. Eur J Oper Res 61(3):255–272 Baykasoglu A (2001) MOAPPS 1.0: Aggregate production planning using the multiple-objective tabu search. Int J Prod Res 39(16):3685–3702 Leung SCH, Tsang SOS, Ng WL, Wu Y (2007) A robust optimization model for multi-site production planning problem in an uncertain environment. Eur J Oper Res 181(1):224–238 Mirzapour Al-e-hashem SMJ, Malekly H, Aryanezhad MB (2011) A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. In J Prod Eco. doi:10.1016/j.ijpe.2011.01.027 Mark Goha c, Joseph YS Limb, Mengc F (2007) A stochastic model for risk management in global supply chain networks. Eur J Oper Res 182(1, 1):164–173 Mirzapour Al-e-hashem SMJ, Baboli A, Sadjadi SJ, Aryanezhad MB (2011) A multi-objective stochastic production-distribution planning problem in an uncertain environment considering risk and workers productivity. Mathematical problems in engineering. Available at: (http://www.hindawi.com/journals/mpe/aip/406398/) Wang RC, Fang HH (2001) Aggregate production planning with multiple objectives in a fuzzy environment. Eur J Oper Res 133(3):521–536 Wang RC, Liang TF (2004) Application of fuzzy multi-objective linear programming to aggregate production planning. Comput Ind Eng 46(1):17–41 Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28(6–7):971–983 Escudero LF, Kamesam PV, King AJ, Wets RJB (1993) Production planning via scenario modeling. Ann Oper Res 43(6):309–335 Bakir MA, Byrne MD (1998) Stochastic linear optimization of an MPMP production planning model. Int J Prod Econ 55(1):87–96 Tang J, Fung RYK, Yung KL (2003) Fuzzy modeling and simulation for aggregate production planning. Int J Syst Sci 34(1):661–673 Aliev RA, Fazlollahi B, Leung SCH, Tsang SOS, Ng WL, Wu Y (2007) A robust optimization model for multi-site production planning problem in an uncertain environment. Eur J Oper Res 181(1):224–238 Kogut B, Kulatilaka N (1994) Operating flexibility, global manufacturing, and the option value of a multinational network. Manage Sci 10:123–139 Leung SCH, Wu Y (2004) A robust optimization model for stochastic aggregate production planning. Prod Plan Control 15(5):502–514 Kazemi-Zanjani M, Ait-Kadi D, Nourelfath M (2010) Robust production planning in a manufacturing environment with random yield: a case in sawmill production planning. Eur J Oper Res 201(3):882–891 Feng P, Rakesh N (2010) Robust supply chain design under uncertain demand in agile manufacturing. Comput Oper Res 37(4):668–683 Wellons HS, Reklaitis GV (1989) The design of multiproduct batch plants under uncertainty with staged expansion. Comput Chem Eng 13:11 Petkov SB, Maranas CD (1998) Design of single product campaign batch plants under demand uncertainty. AIChE J 44:896 Gupta A, Maranas D (2003) Managing demand uncertainty in supply chain planning. Comput Chem Eng 27(8–9):1219–1227 Poojari CA, Lucas C, Mitra G (2008) Robust solutions and risk measures for a supply chain planning problem under uncertainty. J Oper Res Soc 59:2–12. doi:10.1057/palgrave.jors.2602381 Guilléna G, Melea FD, Bagajewiczb MJ, Espuna A, Puigjanera L (2005) Multi-objective supply chain design under uncertainty. Chem Eng Sci 60:1535–1553 Wilkinson SJ, Cortier A, Shah N, Pantelides CC (1996) Integrated production and distribution scheduling on a Europe-wide basis. Comput Chem Eng 20:S1275 Bok JK, Grossmann IE, Park S (2000) Supply chain optimization in continuous flexible process networks. Ind Eng Chem Res 39:1279–1290 Jackson JR, Grossmann IE (2003) Temporal decomposition scheme for nonlinear multisite production planning and distribution models. Ind Eng Chem Res 42:3045–3055 Chen CL, Lee WC (2004) Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Comput Chem Eng 28:1131–1144 Oh HC, Karimi IA (2004) Global multiproduct production-distribution planning with duty drawbacks. AIChE J 50:963–989 Guillen G, Bagajewicz M, Sequeira SE, Espuna A, Puigjaner L (2005) Management of pricing policies and financial risk as a key element for short term scheduling optimization. Ind Eng Chem Res 44:557–575 Subrahmanyam S, Pekny JF, Reklaitis GV (1994) Design of batch chemical plants undermarket uncertainty. Ind Eng Chem Res 33:2688–2701 Liu ML, Sahinidis NV (1996) Optimization of process planning under uncertainty. Ind Eng Chem Res 35:4154 Shapiro A (2000) Stochastic programming by Monte Carlo simulation methods. Stochastic Program E-Prints Ser 03 Shapiro A, Homem-de-Mello T (1998) A simulation-based approach to two-stage stochastic programming with recourse. Math Program 81:301–325 Mak WK, Morton DP Wood RK (1999) Monte Carlo bounding techniques for determining solution quality in stochastic programs. Oper Res Lett 24:47–56 You F, Wassick M, Grossmann IE (2009) Risk management for a global supply chain planning under uncertainty: models and algorithms. AIChE J 55(4):931–946 Eppen GD, Martin RK (1989) A scenario approach to capacity planning. Oper Res 37:517–527 Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust Optimization of large-scale systems. Oper Res 43:264–281 Ahmed S, Sahinidis NV (1998) Robust process planning under uncertainty. Ind Eng Chem Res 37:1883–1892 Applequist GE, Pekny JF, Reklaitis GV (2000) Risk and uncertainty in managing chemical manufacturing supply chains. Comput Chem Eng 24:2211–2222 Barbaro AF, Bagajewicz M (2004) Managing financial risk in planning under uncertainty. AIChE J 50:963–989 Bonfill A, Bagajewicz M, Espunia A, Puigjaner L (2004) Risk management in scheduling of batch plants under uncertain market demand. Ind Eng Chem Res 43:741–750 Azaron A, Brown SA, Modarres TM (2008) A multi-objective stochastic programming approach for supply chain design considering risk. Int J Prod Econ 116:129–138 Boothby D, Dufour A, Tang J (2010) Technology adoption, training and productivity performance. Res Policy 39:650–661 Pan F, Nagi R (2010) Robust supply chain design under uncertain demand in agile manufacturing. Comput Oper Res 37(4):668–683 Yu CS, Li HL (2000) A robust optimization model for stochastic logistic problems. Int J Prod Econ 64(1–3):385–397 Rezaie K, Amalnik MS, Gereie A, Ostadi B, Shakhseniaee M (2007) Using extended Monte Carlo simulation method for the improvement of risk management: Consideration of relationships between uncertainties. Appl Math Comput 190(2):1492–1501 Mavrotas G, Diakoulaki D, Florios K, Georgiou P (2008) A mathematical programming framework for energy planning in services’ sector buildings under uncertainty in load demand: The case of a hospital in Athens. Energy Policy 36:2415–2429 Hammache A, Benali M, Aubé F (2010) Multi-objective self-adaptive algorithm for highly constrained problems: Novel method and applications. Appl Energy 87(8):2467–2478 Mavrotas G (2009) Effective implementation of the ε-constraint method in Multi-Objective Mathematical Programming problems. Appl Math Comput 213(2):455–465 Haimes YY, Wismer DA, Lasdon DS (1971) On bi-criterion formulation of the integrated systems identification and system optimization. IEEE Trans Syst Man Cybern SMC 1:296–297 Miettinen KM (1998) Nonlinear multi-objective optimization. Kluwer, Boston Ehrgott M, Ryan DM (2002) Constructing robust crew schedules with bi-criteria optimization. J Multi-Criteria Decis Anal 11:139–150 Xidonas P, Mavrotas G, Psarras J (2010) Equity portfolio construction and selection using multi-objective mathematical programming. J Glob Optim 47:185–209