Approximating a common fixed point of finite family of asymptotically quasi-nonexpansive mappings in Banach spaces

Afrika Matematika - Tập 27 - Trang 949-961 - 2016
Sebsibe Teferi Woldeamanuel1, Mengistu Goa Sangago1, Habtu Zegeye Hailu2
1Department of Mathematics, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
2Department of Mathematics, University of Botswana, Gaborone, Botswana

Tóm tắt

The purpose of this paper is to prove convergence of a one-step iterative algorithm to approximate a common fixed point of finite family of asymptotically quasi-nonexpansive mappings in a uniformly convex Banach space by assuming some control conditions on the parameters. Our results extend and improve the corresponding results in the literature.

Tài liệu tham khảo

Chidume, C.E.: Geometric properties of Banach spaces and nonlinear iterations. In: Springer Verlag Series: Lecture Notes in Mathematics, vol. 1965 (2009) (ISBN 978-1-84882-189-7) Goebel, K., Kirk, W.A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171–174 (1972) Abbas, M., Khan, S.H., Kim, J.K.: A new one-step iterative process for common fixed points in Banach spaces. J. Inequal. Appl. 2008(548627). doi:10.1155/2008/548627 (10 pages) Bose, S.C.: Weak convergence to the fixed point of an asymptotically nonexpansive mapping. Proc. Am. Math. Soc. 68, 305–308 (1978) Khan, S.H.: Convergence of a one-step iteration scheme for quasi-asymptotically nonexpansive mappings. World Acad. Sci. Eng. Technol. 63, 504–506 (2012) Lim, T.C., Xu, H.K.: Fixed point theorems for asymptotically nonexpansive mappings. Nonlinear Anal. 22, 1345–1355 (1994) Lin, P.K., Tan, K.K., Xu, H.K.: Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings. Nonlinear Anal. Theory Methods Appl. 24(6), 929–936 (1995) Passty, G.B.: Construction of fixed points for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 84, 213–216 (1982) Schu, J.: Approximations of fixed points of asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 112, 143–151 (1991) Schu, J.: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 158, 407–412 (1991) Schu, J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bul. Aust. Math. Soc. 43, 153–159 (1991) Tan, K.K., Xu, H.K.: Nonlinear ergodic theorem for asymptotically nonexpansive mappings. Bul. Aust. Math. Soc. 45, 25–26 (1992) Tan, K.K., Xu, H.K.: Fixed point iteration processes for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 122, 733–739 (1994) Xu, H.K.: Existence and convergence for fixed points of mappings of asymptotically nonexpansive type. Nonlinear Anal. 16, 1139–1146 (1991) Chidume, C.E., Ofoedu, E.U., Zegeye, H.: Strong and weak convergence theorems for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 280(2), 364–374 (2003) Zegeye, H., Shahzad, N.: Convergence of Mann’s type iteration method for generalized asymptotically nonexpansive mappings. Comput. Math. Appl. 62, 4007–4014 (2011) Singh, A.: Stability of common fixed points. Int. J. Funct. Anal. Oper. Theory Appl. 6(2), 73–84 (2014) Osilike, M.O., Aniagbosor, S.C.: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings. In: Mathematical and Computer Modelling, vol. 32, pp. 1181-1191 (2000) Ćirić, L., Rafiq, A., Cakić, N., Ume, J.S.: On fixed points of two asymptotically quasi-nonexpansive mappings. Int. J. Appl. Math. Mech. 6(4), 68–81 (2010) Senter, H.F., Dotson, W.G.: Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 44(2), 375–380 (1974) Tan, K.K., Xu, H.K.: Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301–308 (1993) Yao, Y., Noor, M.A.: Convergence of three-step iterations for asymptotically nonexpansive mappings. Appl. Math. Comput. 187, 883–892 (2007) Chidume, C.E., Ali, B.: Weak and strong convergence theorems for finite families of asymptotically nonexpansive mappings in banach spaces. J. Math. Anal. Appl. 330, 377–387 (2007) Yao, Y., Chen, Y.: Weak and strong convergence of a modified Mann iteration for asymptotically nonexpansive mappings. Nonlinear Funct. Anal. Appl. 12, 307–315 (2007) Khan, S.H., Abbas, M., Khan, A.R.: Common fixed points of two nonexpansive mappings by a new one step iterative scheme. Iran. J. Sci. Technol. Trans. A Sci. 33(A3), 249–257 (2009) Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967) Zhao, J., He, S., Sue, Y.: Weak and strong convergence theorems for nonexpansive mappings in Banach spaces. In: Fixed Point Theory and Applications (2008) Takahashi, W.: Nonlinear Functional Analysis. Kindikagaku, Tokyo (1988) Zeidler, E.: Nonlinear Functional Analysis and Its Applications I: Fixed-Point Theorems. Springer, New York (1986) Sangago, M.G.: Convergence of iterative schemes for nonexpansive mappings. Asian–Eur. J. Math. 4, 671–682 (2011) Purtas, Y., Kiziltunc, H.: Weak and strong convergence of an explicit iteration process for an asymptotically quasi-i-nonexpansive mapping in banach spaces. J. Nonlinear Sci. Appl. 5, 403-411 (2012) (research article) Chang, S.S., Cho, Y.J., Zhou, H.: Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings. J. Korean Math. Soc. 38(6), 1245–1260 (2001)