The ratio of transmitted near-infrared radiation to photosynthetically active radiation (PAR) increases in proportion to the adsorbed PAR in the canopy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Balandier P, Sonohat G, Sinoquet H, Varlet-Grancher C, Dumas Y (2006) Characterisation, prediction and relationships between different wavebands of solar radiation transmitted in the understorey of even-aged oak (Quercus petraea, Q robur) stands. Trees Struct Funct 20:363–370
Ballaré CL, Sánchez RA, Scopel AL, Casal JJ, Ghersa CM (1987) Early detection of neighbor plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ 10:551–557
Campbell GS, Norman JM (1998) An introduction to environmental biophysics, 2nd edn. Springer, New York
Capers RS, Chazdon RL (2004) Rapid assessment of understory light availability in a wet tropical forest. Agric For Meteorol 123:177–185
Chen JM, Cihlar J (1995) Plant canopy gap size analysis theory for improving optical measurements of leaf area index. Appl Opt 34:6211–6222
Holmes MG, Smith H (1977) The function of phytochrome in the natural environment II. The influence of vegetation canopies on spectral energy distribution of natural daylight. Photochem Photobiol 25:539–545
Jordan CF (1969) Derivation of leaf-area index from quality of light on the forest floor. Ecology 50:663–666
Kira T, Shinozaki K, Hozumi K (1969) Structure of forest canopies as related to their primary productivity. Plant Cell Physiol 10:129–142
Law BE, Waring RH (1994) Remote sensing of leaf area index and radiation intercepted by understory vegetation. Ecol Appl 4:272–279
Leuchner M, Menzel A, Werner H (2007) Quantifying the relationship between light quality and light availability at different phenological stages within a mature mixed forest. Agric For Meteorol 142:35–44
Messier C, Puttonen P (1995) Spatial and temporal variation in the light environment of developing scotts pine stands: the basis for a quick and efficient method of characterizing light. Can J For Res 25:354–643
Mo W, Lee M-S, Uchida M, Inatomi M, Saigusa N, Mariko S, Koizumi H (2005) Seasonal and annual variations in soil respiration in a cool-temperate deciduous broad-leaved forest in Japan. Agric For Meteorol 134:81–94
Monsi M, Saeki T (1953) Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion. Jpn J Bot 14:22–52
Muraoka H, Koizumi H (2005) Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: implication to the ecosystem carbon gain. Agric For Meteorol 134:39–59
Muraoka H, Koizumi H (2009) Satellite ecology (SATECO)-linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function. J Plant Res 122:3–20
Muraoka H, Hirota H, Matsumoto J, Nishimura S, Tang Y, Koizumi H, Washitani I (2001) On the convertibility of different light availability indices, relative illuminance and relative photon flux density. Funct Ecol 15:798–803
Nagai S, Nasahara KN, Muraoka H, Akiyama T, Tsuchida S (2010a) Field experiments to test the use of the normalized-difference vegetation index for phenology detection. Agric For Meteorol 150:152–160
Nagai S, Saigusa N, Muraoka S, Nasahara KN (2010b) What makes the satellite-based EVI–GPP relationship unclear in a deciduous broad-leaved forest? Ecol Res. doi:10.1007/s11284-009-0663-9
Nasahara KN, Muraoka H, Nagai S, Mikami H (2008) Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agric For Meteorol 148:1136–1146
Nishida K (2007) Phenological eyes network (PEN): a validation network for remote sensing of the terrestrial ecosystems. Asia-Flux Newslett Issue 21:9–13. http://www.asiaflux.net/
Nishikawa R, Murakami T, Otsuki K, Kimura R, Mizoue N, Yoshida S (2005) Seasonal variation in the spectral reflectance of bamboo using remote sensing data and field measurement data. Kyushu J For Res 58:119–122
Norman JM, Campbell GS (1989) Canopy structure. In: Pearcy RW, Ehleringer J, Mooney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman & Hall, London, pp 301–325
Pecot SD, Horsley SB, Battaglia MA, Mitchell RJ (2005) The influence of canopy, sky condition, and solar angle on light quality in a longleaf pine woodland. Can J For Res 35:1356–1366
Pinty B, Lavergne T, Widlowski J-L, Gobron N, Verstraete MM (2009) On the need to observe vegetation canopies in the near-infrared to estimate visible light absorption. Remote Sens Environ 113:10–23
Pontailler J-Y, Hymus GJ, Drake BG (2003) Estimation of leaf area index using ground-based remote sensed NDVI measurements: validation and comparison with two indirect techniques. Can J Remote Sens 29:381–387
Ross J, Sulev M (2000) Sources of errors in measurements of PAR. Agric For Meteorol 100:103–125
Serrano L, Gamon JA, Penuelas J (2000) Estimation of canopy photosynthetic and nonphotosynthetic components from spectral transmittance. Ecology 81:3149–3162
Setojima M, Imai Y, Yasuoka Y (2005) A study of spectral characteristic of typical tree species at Satoyama coppice forests using hyperspectral remote sensing data and possibility of tree species classification. Seisan Kenkyu 57:385–389
Suzaki T, Kume A, Ino Y (2003) Evaluation of direct and diffuse radiation densities under forest canopies and validation of the light diffusion effect. J For Res 8:283–290
Tsuchida S, Nishida K, Iwao K, Kawato W, Oguma H, Iwasaki A (2005) Phenological eyes network for validation of remote sensing data. J Remote Sens Soc Jpn 25:282–288
Turnbull MH, Yates DJ (1993) Seasonal variation in the red/far-red ratio and photon flux density in an Australian sub-tropical rainforest. Agric For Meteorol 64:111–127
Wang YP, Jarvis PG (1990) Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO). Tree Physiol 7:297–319