Random Forests for land cover classification

Pattern Recognition Letters - Tập 27 - Trang 294-300 - 2006
Pall Oskar Gislason1, Jon Atli Benediktsson1, Johannes R. Sveinsson1
1Department of Electrical and Computer Engineering, University of Iceland, Hjardarhaga 2-6, IS 107 Reykjavik, Iceland

Tài liệu tham khảo

Benediktsson, 1992, Consensus theoretic classification methods, IEEE Trans. Systems, Man Cybernet., 22, 688, 10.1109/21.156582 Benediktsson, 1990, Neural network approaches versus statistical methods in classification of multisource remote sensing data, IEEE Trans. Geosci. Remote Sen., 28, 540, 10.1109/TGRS.1990.572944 Benediktsson, 1997, Hybrid consensus theoretic classification, IEEE Trans. Geosci. Remote Sens., 35, 833, 10.1109/36.602526 Breiman, L., 1994. Bagging predictors. Technical Report No. 421, Department of Statistics, University of California, Berkeley. Breiman, 2001, Random Forests, Mach. Learn., 40, 5, 10.1023/A:1010933404324 Breiman, L., 2003. RF/tools—A class of two eyed algorithms. In: SIAM Workshop, http://oz.berkeley.edu/users/breiman/siamtalk2003.pdf. Breiman, 1984 Briem, 2002, Multiple classifiers applied to multisource remote sensing data, IEEE Trans. Geosci. Remote Sens., 40, 2291, 10.1109/TGRS.2002.802476 Duda, 2001 Freund, Y., Schapire, R.E., 1996. Experiments with a new boosting algorithm. In: Machine Learning. Proceedings of the Thirteenth International Conference. pp. 148–156. Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R., 2004. Random forest classification of multisource remote sensing and geographic data. In: Proceedings 2004 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2004). pp. 1049–1052. Ham, 2005, Investigation of the random forest framework for classification of hyperspectral data, IEEE Trans. Geosci. Remote Sens., 43, 492, 10.1109/TGRS.2004.842481 Hansen, 1990, Neural network ensembles, IEEE Trans. Pattern Anal. Machine Intell., 12, 993, 10.1109/34.58871 Holte, 1993, Very simple classification rules perform well on most commonly used datasets, Mach. Learn., 11, 63, 10.1023/A:1022631118932 Kohavi, R., 1995. The power of decision tables. In: Proceedings of 8th Euro. Conference on Machine Learning. pp. 174–189. Kuncheva, 2003, Fuzzy versus nonfuzzy in combining classifiers designed by Boosting, IEEE Trans. Fuzzy Systems, 11, 1214, 10.1109/TFUZZ.2003.819842 Richards, 1999 Schapire, R.E., 1999. A brief introduction to boosting. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence. pp. 1401–1406. Witten, 1993