Toward the automated generation of genome-scale metabolic networks in the SEED

Matthew DeJongh1, Kevin Formsma1, Paul Boillot1, John Gould1, Matthew Rycenga2, Aaron A. Best3
1Department of Computer Science, Hope College, 27 Graves Place, Holland, MI, USA
2Department of Chemistry, Hope College, 35 E. 12th St., Holland, MI, USA
3Department of Biology, Hope College, 35 E. 12th St., Holland, MI, USA

Tóm tắt

Abstract Background

Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process.

Results

We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis.

Conclusion

Our method sets the stage for the automated generation of substantially complete metabolic networks for over 400 complete genome sequences currently in the SEED. With each genome that is processed using our tools, the database of common components grows to cover more of the diversity of metabolic pathways. This increases the likelihood that components of reaction networks for subsequently processed genomes can be retrieved from the database, rather than assembled and verified manually.

Từ khóa


Tài liệu tham khảo

Di Ventura B, Lemerle C, Michalodimitrakis K, Serrano L: From in vivo to in silico biology and back. Nature 2006, 443(7111):527–533.

Schilling CH, Edwards JS, Palsson BO: Toward metabolic phenomics: analysis of genomic data using flux balances. Biotechnol Prog 1999, 15(3):288–295.

Kauffman KJ, Prakash P, Edwards JS: Advances in flux balance analysis. Curr Opin Biotechnol 2003, 14(5):491–496.

Lee JM, Gianchandani EP, Papin JA: Flux balance analysis in the era of metabolomics. Brief Bioinform 2006, 7(2):140–150.

Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004, 2(11):886–897.

Palsson B: Two-dimensional annotation of genomes. Nat Biotechnol 2004, 22(10):1218–1219.

Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin, Selkov E, Palsson BO: Metabolic modeling of microbial strains in silico. Trends Biochem Sci 2001, 26(3):179–186.

Francke C, Siezen RJ, Teusink B: Reconstructing the metabolic network of a bacterium from its genome. Trends Microbiol 2005, 13(11):550–558.

Green ML, Karp PD: A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics 2004, 5: 76.

Osterman A, Overbeek R: Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol 2003, 7(2):238–251.

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de Crecy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank ED, Gerdes S, Glass EM, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy AC, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch GD, Rodionov DA, Ruckert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33(17):5691–5702.

Arakawa K, Yamada Y, Shinoda K, Nakayama Y, Tomita M: GEM System: automatic prototyping of cell-wide metabolic pathway models from genomes. BMC Bioinformatics 2006, 7: 168.

Karp PD, Paley S, Romero P: The Pathway Tools software. Bioinformatics 2002, 18 Suppl 1: S225–32.

Pinney JW, Shirley MW, McConkey GA, Westhead DR: metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella . Nucleic Acids Res 2005, 33(4):1399–1409.

Sun J, Zeng AP: IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 2004, 5: 112.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32(Database issue):D277–80.

Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, Pick J, Rhee SY, Karp PD: MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 2004, 32(Database issue):D438–42.

Notebaart RA, van Enckevort FH, Francke C, Siezen RJ, Teusink B: Accelerating the reconstruction of genome-scale metabolic networks. BMC Bioinformatics 2006, 7: 296.

Segre D, Zucker J, Katz J, Lin X, D'Haeseleer P, Rindone WP, Kharchenko P, Nguyen DH, Wright MA, Church GM: From annotated genomes to metabolic flux models and kinetic parameter fitting. Omics 2003, 7(3):301–316.

Becker SA, Palsson BO: Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol 2005, 5(1):8.

Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 2004, 14(7):1298–1309.

Feist AM, Scholten JC, Palsson BO, Brockman FJ, Ideker T: Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri . Mol Syst Biol 2006, 2: 2006.0004.

Heinemann M, Kummel A, Ruinatscha R, Panke S: In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 2005, 92(7):850–864.

Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4(9):R54.

Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO: Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 2002, 184(16):4582–4593.

Teusink B, van Enckevort FH, Francke C, Wiersma A, Wegkamp A, Smid EJ, Siezen RJ: In silico reconstruction of the metabolic pathways of Lactobacillus plantarum : comparing predictions of nutrient requirements with those from growth experiments. Appl Environ Microbiol 2005, 71(11):7253–7262.

Thiele I, Vo TD, Price ND, Palsson BO: Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 2005, 187(16):5818–5830.

Oliveira AP, Nielsen J, Forster J: Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol 2005, 5: 39.

Forster J, Famili I, Fu P, Palsson BO, Nielsen J: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 2003, 13(2):244–253.

The SEED[http://www.theseed.org]

Kyoto Encyclopedia of Genes and Genomes[http://www.genome.jp/dbget-bin/www_bget?eco+b1241]

Hardy S, Robillard PN: Modeling and simulation of molecular biology systems using petri nets: modeling goals of various approaches. J Bioinform Comput Biol 2004, 2(4):595–613.

Koch I, Junker BH, Heiner M: Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 2005, 21(7):1219–1226.

Pinney JW, Westhead DR, McConkey GA: Petri Net representations in systems biology. Biochem Soc Trans 2003, 31(Pt 6):1513–1515.

Reddy VN, Liebman MN, Mavrovouniotis ML: Qualitative analysis of biochemical reaction systems. Comput Biol Med 1996, 26(1):9–24.

Klamt S, Stelling J, Ginkel M, Gilles ED: FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 2003, 19(2):261–269.

Systems Biology Research Group[http://gcrg.ucsd.edu/organisms/staph.html]

Chang DE, Conway T: Metabolic genomics. Adv Microb Physiol 2005, 50: 1–39.

Ott MA, Vriend G: Correcting ligands, metabolites, and pathways. BMC Bioinformatics 2006, 7: 517.