Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles
Tóm tắt
Blood and the linings of blood vessels may be regarded as a fifth tissue type. The human body contains 5 × 109 red blood cells (RBCs) per ml, a total of 2.5 × 1013 cells in the 5 l of blood present in the body. With an average lifetime of 125 days, human RBCs are destroyed by leukocytes in the spleen and liver. Nowadays red blood cells are extensively used to study various metabolic functions. Nanoparticles (NP) are being widely accepted for drug delivery system. This review summarizes the red blood cells, NPs and their characteristics on the basis of the RBC components along with drug delivery systems through RBCs. Further, we also discussed that how erythrocytes can be used as an efficient in vitro model for evaluating the efficacy of various nanocomposite materials.
Tài liệu tham khảo
Ademiloye AS, Zhang L, Liew K (2016) Predicting the elastic properties and deformability of red blood cell membrane using an atomistic-continuum approach. In: Proceedings of the international multiconference of engineers and computer scientists 2016, IMECS 2016
Aggarwal T, Wadhwa R, Rohil V, Maurya PK (2017) Biomarkers of oxidative stress and protein–protein interaction in chronic obstructive pulmonary disease. Arch Phys Biochem 124(3):226–231
Agnihotri J, Saraf S, Singh S, Bigoniya P (2015) Development and evaluation of anti-malarial bio-conjugates: artesunate-loaded nanoerythrosomes. Drug Deliv Transl Res 5(5):489–497
Anselmo AC, Gupta V, Zern BJ, Pan D, Zakrewsky M, Muzykantov V, Mitragotri S (2013) Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7(12):11129–11137
Antonelli A, Magnani M (2014) Red blood cells as carriers of iron oxide-based contrast agents for diagnostic applications. J Biomed Nanotechnol 10(9):1732–1750
Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M (2011) Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 6(2):211–223
Aryal S, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Zhang D-E, Zhang L (2013) Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 8(8):1271–1280
Asharani P, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP, Valiyaveettil S (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Func Mater 20(8):1233–1242
Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, Desimone MF, Poletta G, López G, Monserrat JM (2017) Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Ind 76:230–239
Baranwal A, Mahato K, Srivastava A, Maurya PK, Chandra P (2016) Phytofabricated metallic nanoparticles and their clinical applications. RSC Adv 6(107):105996–106010
Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P (2018) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:422
Bhagat S, Vallabani NS, Shutthanandan V, Bowden M, Karakoti AS, Singh S (2018) Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J Colloid Interface Sci 513:831–842
Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H, Rietjens IM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7(1):25
Bransky A, Korin N, Nemirovski Y, Dinnar U (2006) An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology. Biosens Bioelectron 22(2):165–169
Chambers E, Mitragotri S (2004) Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release 100(1):111–119
Chen K, Merkel TJ, Pandya A, Napier ME, Luft JC, Daniel W, Sheiko S, DeSimone JM (2012) Low modulus biomimetic microgel particles with high loading of hemoglobin. Biomacromol 13(9):2748–2759
Chen K, Xu J, Luft JC, Tian S, Raval JS, DeSimone JM (2014) Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels. J Am Chem Soc 136(28):9947–9952
Davson H, Danielli JF (1943) The permeability of natural membranes. Cambridge University Press, Cambridge
Deng J, Xu S, Hu W, Xun X, Zheng L, Su M (2018) Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials 154:24–33
Désilets J, Lejeune A, Mercer J, Gicquaud C (2001) Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res 21(3B):1741–1747
Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci 106(51):21495–21499
Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779
Fonseca LC, de Araújo MM, de Moraes ACM, da Silva DS, Ferreira AG, Franqui LS, Martinez DST, Alves OL (2017) Nanocomposites based on graphene oxide and mesoporous silica nanoparticles: preparation, characterization and nanobiointeractions with red blood cells and human plasma proteins. Appl Surf Sci 437:110–121
Ghosh M, Chakraborty A, Mukherjee A (2013) Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol 33(10):1097–1110
Glodek AM, Mirchev R, Golan DE, Khoory JA, Burns JM, Shevkoplyas SS, Nicholson-Weller A, Ghiran IC (2010) Ligation of complement receptor 1 increases erythrocyte membrane deformability. Blood 116(26):6063–6071
Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900
Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41(4):439–443
He H, Ye J, Wang Y, Liu Q, Chung HS, Kwon YM, Shin MC, Lee K, Yang VC (2014a) Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Controlled Release 176:123–132
He Z, Liu J, Du L (2014b) The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes. Nanoscale 6(15):9017–9024
Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ (2018) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18
Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci 108(27):10980–10985
Hu CMJ, Fang RH, Zhang L (2012) Erythrocyte-inspired delivery systems. Adv Healthc Mater 1(5):537–547
Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang L (2013a) A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8(5):336
Hu C-MJ, Fang RH, Luk BT, Zhang L (2013b) Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol 8(12):933
Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon J-C (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3):142–149
Jacobson DL, Gange SJ, Rose NR, Graham NM (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84(3):223–243
Jain S, Vyas S (1994) Magnetically responsive diclofenac sodium-loaded erythrocytes: preparation and in vitro characterization. J Microencapsul 11(2):141–151
Jiang A, Song B, Ji X, Peng F, Wang H, Su Y, He Y (2018a) Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency. Nano Res 11(4):2285–2294
Jiang T, Zhang B, Zhang L, Wu X, Li H, Shen S, Luo Z, Liu X, Hu Y, Pang Z (2018b) Biomimetic nanoparticles delivered hedgehog pathway inhibitor to modify tumour microenvironment and improved chemotherapy for pancreatic carcinoma. Artif Cells Nanomed Biotechnol 46(sup1):1088–1101
Kim MJ, Shin S (2014) Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem Toxicol 67:80–86
Kim ER, Fan S, Akhmedov D, Sun K, Lim H, O’Brien W, Xu Y, Mangieri LR, Zhu Y, Lee C-C (2017) Red blood cell β-adrenergic receptors contribute to diet-induced energy expenditure by increasing O2 supply. JCI Insight 2(14):e93367
Komin A, Russell L, Hristova K, Searson P (2017) Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges. Adv Drug Deliv Rev 110:52–64
Kroll AV, Fang RH, Zhang L (2016) Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28(1):23–32
Kumar P, Maurya PK (2014) Epigallocatechin-3-gallate protects erythrocyte Ca2+-ATPase and Na+/K+-ATPase against oxidative induced damage during aging in humans. Adv Pharm Bull 4(Suppl 1):443
Kumar P, Chaudhary N, Sharma NK, Maurya PK (2016) Detection of oxidative stress biomarkers in myricetin treated red blood cells. RSC Adv 6(102):100028–100034
Kumar P, Wadhwa R, Gupta R, Chandra P, Maurya PK (2018) Spectroscopic determination of intracellular quercetin uptake using erythrocyte model and its implications in human aging. 3 Biotech 8(12):498
Kumar V, Wadhwa R, Kumar N, Maurya PK (2019) A comparative study of chemically synthesized and Camellia sinensis leaf extract-mediated silver nanoparticles. 3 Biotech 9(1):7
Kwon T, Woo HJ, Kim YH, Lee HJ, Park KH, Park S, Youn B (2012) Optimizing hemocompatibility of surfactant-coated silver nanoparticles in human erythrocytes. J Nanosci Nanotechnol 12(8):6168–6175
Lau IP, Chen H, Wang J, Ong HC, Leung KC-F, Ho HP, Kong SK (2012) In vitro effect of CTAB-and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology 6(8):847–856
Laurencin M, Cam N, Georgelin T, Clément O, Autret G, Siaugue JM, Ménager C (2013) Human erythrocytes covered with magnetic core–shell nanoparticles for multimodal imaging. Adv Healthc Mater 2(9):1209–1212
Lejeune A, Moorjani M, Gicquaud C, Lacroix J (1994) Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for. Anticancer Res 14(915.920):915–920
Li S-Q, Zhu R-R, Zhu H, Xue M, Sun X-Y, Yao S-D, Wang S-L (2008) Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46(12):3626–3631
Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615
Lin Y-S, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132(13):4834–4842
Luk BT, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Gao W, Zhang L (2014) Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6(5):2730–2737
Luk BT, Fang RH, Hu C-MJ, Copp JA, Thamphiwatana S, Dehaini D, Gao W, Zhang K, Li S, Zhang L (2016) Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 6(7):1004
Magnani M, Fazi A, Mangani F, Rossi L, Mancini U (1993) Methanol detoxification by enzyme-loaded erythrocytes. Biotechnol Appl Biochem 18(3):217–226
Mahato K, Baranwal A, Srivastava A, Maurya PK, Chandra P (2016) Smart materials for biosensing applications. In: Techno-Societal 2016, international conference on advanced technologies for societal applications, 2016. Springer, pp 421–431
Mai TD, d’Orlyé F, Ménager C, Varenne A, Siaugue J-M (2013) Red blood cells decorated with functionalized core–shell magnetic nanoparticles: elucidation of the adsorption mechanism. Chem Commun 49(47):5393–5395
Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC (2013) Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechnol Biol Med 9(4):474–491
Maurya PK, Chandra P (2017) Oxidative stress: diagnostic methods and applications in medical science. Springer, Berlin
Maurya PK, Kumar P, Chandra P (2015) Biomarkers of oxidative stress in erythrocytes as a function of human age. World J Methodol 5(4):216
Maurya PK, Kumar P, Chandra P (2016a) Age-dependent detection of erythrocytes glucose-6-phosphate dehydrogenase and its correlation with oxidative stress. Arch Physiol Biochem 122(2):61–66
Maurya PK, Kumar P, Nagotu S, Chand S, Chandra P (2016b) Multi-target detection of oxidative stress biomarkers in quercetin and myricetin treated human red blood cells. RSC Adv 6(58):53195–53202
Miri A, Darroudi M, Entezari R, Sarani M (2018) Biosynthesis of gold nanoparticles using Prosopis farcta extract and its in vitro toxicity on colon cancer cells. Res Chem Intermed 44(5):3169–3177
Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H (2012) Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res 5(3):16–23
Nemmar A, Beegam S, Yuvaraju P, Yasin J, Shahin A, Ali BH (2014) Interaction of amorphous silica nanoparticles with erythrocytes in vitro: role of oxidative stress. Cell Physiol Biochem 34(2):255–265
Nirmala JG, Akila S, Narendhirakannan R, Chatterjee S (2017) Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv Powder Technol 28(4):1170–1184
Orlov D, Karkouti K (2015) The pathophysiology and consequences of red blood cell storage. Anaesthesia 70(s1):29
Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, Lin S, Xia T, Nel AE (2015) Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 9(10):9573–9584
Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169
Pan DC, Myerson JW, Brenner JS, Patel PN, Anselmo AC, Mitragotri S, Muzykantov V (2018) Nanoparticle properties modulate their attachment and effect on carrier red blood cells. Sci Rep 8(1):1615
Pei Q, Hu X, Zheng X, Liu S, Li Y, Jing X, Xie Z (2018) Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 12(2):1630–1641
Prasad A, Mahato K, Chandra P, Srivastava A, Joshi SN, Maurya PK (2016) Bioinspired composite materials: applications in diagnostics and therapeutics. J Mol Eng Mater 4(01):1640004
Purohit R, Singh S (2018) Fluorescent gold nanoclusters for efficient cancer cell targeting. Int J Nanomed 13:15
Purohit R, Vallabani NS, Shukla RK, Kumar A, Singh S (2016) Effect of gold nanoparticle size and surface coating on human red blood cells. Bioinspired Biomim Nanobiomaterials 5(3):121–131
Qualhato G, Rocha TL, de Oliveira Lima EC, e Silva DM, Cardoso JR, Grisolia CK, de Sabóia-Morais SMT (2017) Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere 183:305–314
Rao L, Cai B, Bu L-L, Liao Q-Q, Guo S-S, Zhao X-Z, Dong W-F, Liu W (2017) Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4):3496–3505
Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, Hu Y, Wu J (2017) Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater 59:269–282
Rizvi SI, Maurya PK (2007) Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci 1100(1):373–382
Robertson JD (1959) The ultrastructure of cell membranes and their derivatives. In: Biochemical society symposium, p 3
Rossi L, Serafini S, Cenerini L, Picardi F, Bigi L, Panzani I, Magnani M (2001) Erythrocyte-mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol Appl Biochem 33(2):85–89
Sahoo K, Karumuri S, Hikkaduwa Koralege RS, Flynn NH, Hartson S, Liu J, Ramsey JD, Kalkan AK, Pope C, Ranjan A (2017) Molecular and biocompatibility characterization of red blood cell membrane targeted and cell-penetrating-peptide-modified polymeric nanoparticles. Mol Pharm 14(7):2224–2235
Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3(2):410–420
Schönermark S, Filsinger S, Berger B, Hänsch GM (1988) The C8-binding protein of human erythrocytes: interaction with the components of the complement-attack phase. Immunology 63(4):585–590
Sekar D, Falcioni ML, Barucca G, Falcioni G (2014) DNA damage and repair following in vitro exposure to two different forms of titanium dioxide nanoparticles on trout erythrocyte. Environ Toxicol 29(1):117–127
Serafini S, Rossi L, Antonelli A, Fraternale A, Cerasi A, Crinelli R, Chiarantini L, Schiavano G, Magnani M (2004) Drug delivery through phagocytosis of red blood cells. Transfus Med Hemother 31(2):92–101
Shah J, Singh S (2018) Unveiling the role of ATP in amplification of intrinsic peroxidase-like activity of gold nanoparticles. 3 Biotech 8(1):67
Shah J, Purohit R, Singh R, Karakoti AS, Singh S (2015) ATP-enhanced peroxidase-like activity of gold nanoparticles. J Colloid Interface Sci 456:100–107
Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ (2014) Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37(3):336–347
Shrivastava R, Kushwaha P, Bhutia YC, Flora S (2016) Oxidative stress following exposure to silver and gold nanoparticles in mice. Toxicol Ind Health 32(8):1391–1404
Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731
Singh S (2017) Glucose decorated gold nanoclusters: a membrane potential independent fluorescence probe for rapid identification of cancer cells expressing Glut receptors. Colloids Surf, B 155:25–34
Skalak R, Branemark P (1969) Deformation of red blood cells in capillaries. Science 164(3880):717–719
Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy BP, Reddy NP (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 31(11):1113–1131
Steck TL (1974) The organization of proteins in the human red blood cell membrane: a review. J Cell Biol 62(1):1
Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y (2017) Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 7(3):523
Sun Y, Su J, Liu G, Chen J, Zhang X, Zhang R, Jiang M, Qiu M (2017) Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 96:115–128
Toumey C (2015) Thank you, Royal Society. Nat Nanotechnol 10(4):291
Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Can Res 69(22):8784–8789
Trpkovic A, Todorovic-Markovic B, Kleut D, Misirkic M, Janjetovic K, Vucicevic L, Pantovic A, Jovanovic S, Dramicanin M, Markovic Z (2010) Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles. Nanotechnology 21(37):375102
Tsai RK, Rodriguez PL, Discher DE (2010) Self inhibition of phagocytosis: the affinity of ‘marker of self’CD47 for SIRPα dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis 45(1):67–74
Tu J, Bussmann J, Du G, Gao Y, Bouwstra JA, Kros A (2018) Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. Int J Pharm 543(1–2):169–178
Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S (2013) Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5(22):10729–10752
Turkez H, Yousef MI, Sönmez E, Togar B, Bakan F, Sozio P, Stefano AD (2014) Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells. J Appl Toxicol 34(4):373–379
Vallabani NS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8(6):279
Vallabani NS, Karakoti AS, Singh S (2017) ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH. Colloids Surf, B 153:52–60
Villa CH, Seghatchian J, Muzykantov V (2016) Drug delivery by erythrocytes: “Primum non nocere”. Transfus Apheres Sci 55(3):275–280
Wang X, Li H, Liu X, Tian Y, Guo H, Jiang T, Luo Z, Jin K, Kuai X, Liu Y (2017) Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials 143:130–141
Waugh R, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26(1):115–131
Xia Q, Li H, Liu Y, Zhang S, Feng Q, Xiao K (2017) The effect of particle size on the genotoxicity of gold nanoparticles. J Biomed Mater Res, Part A 105(3):710–719
Xuan M, Shao J, Zhao J, Li Q, Dai L, Li J (2018) Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy. Angew Chemie Int Ed 57(21):6049–6053
Yallapu MM, Ebeling MC, Chauhan N, Jaggi M, Chauhan SC (2011) Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int J Nanomed 6:2779
Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discovery 10(7):521
Zaitsev S, Kowalska MA, Neyman M, Carnemolla R, Tliba S, Ding B-S, Stonestrom A, Spitzer D, Atkinson JP, Poncz M (2012) Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis. Blood 119(20):4779–4785
Zhang X-D, Wu D, Shen X, Liu P-X, Yang N, Zhao B, Zhang H, Sun Y-M, Zhang L-A, Fan F-Y (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071
Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS-Y (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2):1366–1375