Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles

3 Biotech - Tập 9 - Trang 1-15 - 2019
Ridhima Wadhwa1, Taru Aggarwal2, Noopur Thapliyal2, Ashutosh Kumar3, Priya4, Pooja Yadav4, Vandana Kumari4, Boda Sai Charan Reddy4, Pranjal Chandra3, Pawan Kumar Maurya4
1Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
2Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
3Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
4Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, India

Tóm tắt

Blood and the linings of blood vessels may be regarded as a fifth tissue type. The human body contains 5 × 109 red blood cells (RBCs) per ml, a total of 2.5 × 1013 cells in the 5 l of blood present in the body. With an average lifetime of 125 days, human RBCs are destroyed by leukocytes in the spleen and liver. Nowadays red blood cells are extensively used to study various metabolic functions. Nanoparticles (NP) are being widely accepted for drug delivery system. This review summarizes the red blood cells, NPs and their characteristics on the basis of the RBC components along with drug delivery systems through RBCs. Further, we also discussed that how erythrocytes can be used as an efficient in vitro model for evaluating the efficacy of various nanocomposite materials.

Tài liệu tham khảo

Ademiloye AS, Zhang L, Liew K (2016) Predicting the elastic properties and deformability of red blood cell membrane using an atomistic-continuum approach. In: Proceedings of the international multiconference of engineers and computer scientists 2016, IMECS 2016 Aggarwal T, Wadhwa R, Rohil V, Maurya PK (2017) Biomarkers of oxidative stress and protein–protein interaction in chronic obstructive pulmonary disease. Arch Phys Biochem 124(3):226–231 Agnihotri J, Saraf S, Singh S, Bigoniya P (2015) Development and evaluation of anti-malarial bio-conjugates: artesunate-loaded nanoerythrosomes. Drug Deliv Transl Res 5(5):489–497 Anselmo AC, Gupta V, Zern BJ, Pan D, Zakrewsky M, Muzykantov V, Mitragotri S (2013) Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7(12):11129–11137 Antonelli A, Magnani M (2014) Red blood cells as carriers of iron oxide-based contrast agents for diagnostic applications. J Biomed Nanotechnol 10(9):1732–1750 Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M (2011) Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 6(2):211–223 Aryal S, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Zhang D-E, Zhang L (2013) Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine 8(8):1271–1280 Asharani P, Sethu S, Vadukumpully S, Zhong S, Lim CT, Hande MP, Valiyaveettil S (2010) Investigations on the structural damage in human erythrocytes exposed to silver, gold, and platinum nanoparticles. Adv Func Mater 20(8):1233–1242 Bacchetta C, Ale A, Simoniello MF, Gervasio S, Davico C, Rossi AS, Desimone MF, Poletta G, López G, Monserrat JM (2017) Genotoxicity and oxidative stress in fish after a short-term exposure to silver nanoparticles. Ecol Ind 76:230–239 Baranwal A, Mahato K, Srivastava A, Maurya PK, Chandra P (2016) Phytofabricated metallic nanoparticles and their clinical applications. RSC Adv 6(107):105996–106010 Baranwal A, Srivastava A, Kumar P, Bajpai VK, Maurya PK, Chandra P (2018) Prospects of nanostructure materials and their composites as antimicrobial agents. Front Microbiol 9:422 Bhagat S, Vallabani NS, Shutthanandan V, Bowden M, Karakoti AS, Singh S (2018) Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J Colloid Interface Sci 513:831–842 Bhattacharjee S, de Haan LH, Evers NM, Jiang X, Marcelis AT, Zuilhof H, Rietjens IM, Alink GM (2010) Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 7(1):25 Bransky A, Korin N, Nemirovski Y, Dinnar U (2006) An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology. Biosens Bioelectron 22(2):165–169 Chambers E, Mitragotri S (2004) Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release 100(1):111–119 Chen K, Merkel TJ, Pandya A, Napier ME, Luft JC, Daniel W, Sheiko S, DeSimone JM (2012) Low modulus biomimetic microgel particles with high loading of hemoglobin. Biomacromol 13(9):2748–2759 Chen K, Xu J, Luft JC, Tian S, Raval JS, DeSimone JM (2014) Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels. J Am Chem Soc 136(28):9947–9952 Davson H, Danielli JF (1943) The permeability of natural membranes. Cambridge University Press, Cambridge Deng J, Xu S, Hu W, Xun X, Zheng L, Su M (2018) Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials 154:24–33 Désilets J, Lejeune A, Mercer J, Gicquaud C (2001) Nanoerythrosomes, a new derivative of erythrocyte ghost: IV. Fate of reinjected nanoerythrosomes. Anticancer Res 21(3B):1741–1747 Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S (2009) Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci 106(51):21495–21499 Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779 Fonseca LC, de Araújo MM, de Moraes ACM, da Silva DS, Ferreira AG, Franqui LS, Martinez DST, Alves OL (2017) Nanocomposites based on graphene oxide and mesoporous silica nanoparticles: preparation, characterization and nanobiointeractions with red blood cells and human plasma proteins. Appl Surf Sci 437:110–121 Ghosh M, Chakraborty A, Mukherjee A (2013) Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol 33(10):1097–1110 Glodek AM, Mirchev R, Golan DE, Khoory JA, Burns JM, Shevkoplyas SS, Nicholson-Weller A, Ghiran IC (2010) Ligation of complement receptor 1 increases erythrocyte membrane deformability. Blood 116(26):6063–6071 Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900 Gorter E, Grendel F (1925) On bimolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41(4):439–443 He H, Ye J, Wang Y, Liu Q, Chung HS, Kwon YM, Shin MC, Lee K, Yang VC (2014a) Cell-penetrating peptides meditated encapsulation of protein therapeutics into intact red blood cells and its application. J Controlled Release 176:123–132 He Z, Liu J, Du L (2014b) The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes. Nanoscale 6(15):9017–9024 Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ (2018) Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res 15:1–18 Hu C-MJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci 108(27):10980–10985 Hu CMJ, Fang RH, Zhang L (2012) Erythrocyte-inspired delivery systems. Adv Healthc Mater 1(5):537–547 Hu C-MJ, Fang RH, Copp J, Luk BT, Zhang L (2013a) A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol 8(5):336 Hu C-MJ, Fang RH, Luk BT, Zhang L (2013b) Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol 8(12):933 Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LC, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon J-C (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3):142–149 Jacobson DL, Gange SJ, Rose NR, Graham NM (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol 84(3):223–243 Jain S, Vyas S (1994) Magnetically responsive diclofenac sodium-loaded erythrocytes: preparation and in vitro characterization. J Microencapsul 11(2):141–151 Jiang A, Song B, Ji X, Peng F, Wang H, Su Y, He Y (2018a) Doxorubicin-loaded silicon nanoparticles impregnated into red blood cells featuring bright fluorescence, strong photostability, and lengthened blood residency. Nano Res 11(4):2285–2294 Jiang T, Zhang B, Zhang L, Wu X, Li H, Shen S, Luo Z, Liu X, Hu Y, Pang Z (2018b) Biomimetic nanoparticles delivered hedgehog pathway inhibitor to modify tumour microenvironment and improved chemotherapy for pancreatic carcinoma. Artif Cells Nanomed Biotechnol 46(sup1):1088–1101 Kim MJ, Shin S (2014) Toxic effects of silver nanoparticles and nanowires on erythrocyte rheology. Food Chem Toxicol 67:80–86 Kim ER, Fan S, Akhmedov D, Sun K, Lim H, O’Brien W, Xu Y, Mangieri LR, Zhu Y, Lee C-C (2017) Red blood cell β-adrenergic receptors contribute to diet-induced energy expenditure by increasing O2 supply. JCI Insight 2(14):e93367 Komin A, Russell L, Hristova K, Searson P (2017) Peptide-based strategies for enhanced cell uptake, transcellular transport, and circulation: mechanisms and challenges. Adv Drug Deliv Rev 110:52–64 Kroll AV, Fang RH, Zhang L (2016) Biointerfacing and applications of cell membrane-coated nanoparticles. Bioconjug Chem 28(1):23–32 Kumar P, Maurya PK (2014) Epigallocatechin-3-gallate protects erythrocyte Ca2+-ATPase and Na+/K+-ATPase against oxidative induced damage during aging in humans. Adv Pharm Bull 4(Suppl 1):443 Kumar P, Chaudhary N, Sharma NK, Maurya PK (2016) Detection of oxidative stress biomarkers in myricetin treated red blood cells. RSC Adv 6(102):100028–100034 Kumar P, Wadhwa R, Gupta R, Chandra P, Maurya PK (2018) Spectroscopic determination of intracellular quercetin uptake using erythrocyte model and its implications in human aging. 3 Biotech 8(12):498 Kumar V, Wadhwa R, Kumar N, Maurya PK (2019) A comparative study of chemically synthesized and Camellia sinensis leaf extract-mediated silver nanoparticles. 3 Biotech 9(1):7 Kwon T, Woo HJ, Kim YH, Lee HJ, Park KH, Park S, Youn B (2012) Optimizing hemocompatibility of surfactant-coated silver nanoparticles in human erythrocytes. J Nanosci Nanotechnol 12(8):6168–6175 Lau IP, Chen H, Wang J, Ong HC, Leung KC-F, Ho HP, Kong SK (2012) In vitro effect of CTAB-and PEG-coated gold nanorods on the induction of eryptosis/erythroptosis in human erythrocytes. Nanotoxicology 6(8):847–856 Laurencin M, Cam N, Georgelin T, Clément O, Autret G, Siaugue JM, Ménager C (2013) Human erythrocytes covered with magnetic core–shell nanoparticles for multimodal imaging. Adv Healthc Mater 2(9):1209–1212 Lejeune A, Moorjani M, Gicquaud C, Lacroix J (1994) Nanoerythrosome, a new derivative of erythrocyte ghost: preparation and antineoplastic potential as drug carrier for. Anticancer Res 14(915.920):915–920 Li S-Q, Zhu R-R, Zhu H, Xue M, Sun X-Y, Yao S-D, Wang S-L (2008) Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46(12):3626–3631 Liao K-H, Lin Y-S, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces 3(7):2607–2615 Lin Y-S, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132(13):4834–4842 Luk BT, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Gao W, Zhang L (2014) Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 6(5):2730–2737 Luk BT, Fang RH, Hu C-MJ, Copp JA, Thamphiwatana S, Dehaini D, Gao W, Zhang K, Li S, Zhang L (2016) Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 6(7):1004 Magnani M, Fazi A, Mangani F, Rossi L, Mancini U (1993) Methanol detoxification by enzyme-loaded erythrocytes. Biotechnol Appl Biochem 18(3):217–226 Mahato K, Baranwal A, Srivastava A, Maurya PK, Chandra P (2016) Smart materials for biosensing applications. In: Techno-Societal 2016, international conference on advanced technologies for societal applications, 2016. Springer, pp 421–431 Mai TD, d’Orlyé F, Ménager C, Varenne A, Siaugue J-M (2013) Red blood cells decorated with functionalized core–shell magnetic nanoparticles: elucidation of the adsorption mechanism. Chem Commun 49(47):5393–5395 Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA, Wood GC (2013) Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomed Nanotechnol Biol Med 9(4):474–491 Maurya PK, Chandra P (2017) Oxidative stress: diagnostic methods and applications in medical science. Springer, Berlin Maurya PK, Kumar P, Chandra P (2015) Biomarkers of oxidative stress in erythrocytes as a function of human age. World J Methodol 5(4):216 Maurya PK, Kumar P, Chandra P (2016a) Age-dependent detection of erythrocytes glucose-6-phosphate dehydrogenase and its correlation with oxidative stress. Arch Physiol Biochem 122(2):61–66 Maurya PK, Kumar P, Nagotu S, Chand S, Chandra P (2016b) Multi-target detection of oxidative stress biomarkers in quercetin and myricetin treated human red blood cells. RSC Adv 6(58):53195–53202 Miri A, Darroudi M, Entezari R, Sarani M (2018) Biosynthesis of gold nanoparticles using Prosopis farcta extract and its in vitro toxicity on colon cancer cells. Res Chem Intermed 44(5):3169–3177 Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H (2012) Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res 5(3):16–23 Nemmar A, Beegam S, Yuvaraju P, Yasin J, Shahin A, Ali BH (2014) Interaction of amorphous silica nanoparticles with erythrocytes in vitro: role of oxidative stress. Cell Physiol Biochem 34(2):255–265 Nirmala JG, Akila S, Narendhirakannan R, Chatterjee S (2017) Vitis vinifera peel polyphenols stabilized gold nanoparticles induce cytotoxicity and apoptotic cell death in A431 skin cancer cell lines. Adv Powder Technol 28(4):1170–1184 Orlov D, Karkouti K (2015) The pathophysiology and consequences of red blood cell storage. Anaesthesia 70(s1):29 Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, Lin S, Xia T, Nel AE (2015) Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 9(10):9573–9584 Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169 Pan DC, Myerson JW, Brenner JS, Patel PN, Anselmo AC, Mitragotri S, Muzykantov V (2018) Nanoparticle properties modulate their attachment and effect on carrier red blood cells. Sci Rep 8(1):1615 Pei Q, Hu X, Zheng X, Liu S, Li Y, Jing X, Xie Z (2018) Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano 12(2):1630–1641 Prasad A, Mahato K, Chandra P, Srivastava A, Joshi SN, Maurya PK (2016) Bioinspired composite materials: applications in diagnostics and therapeutics. J Mol Eng Mater 4(01):1640004 Purohit R, Singh S (2018) Fluorescent gold nanoclusters for efficient cancer cell targeting. Int J Nanomed 13:15 Purohit R, Vallabani NS, Shukla RK, Kumar A, Singh S (2016) Effect of gold nanoparticle size and surface coating on human red blood cells. Bioinspired Biomim Nanobiomaterials 5(3):121–131 Qualhato G, Rocha TL, de Oliveira Lima EC, e Silva DM, Cardoso JR, Grisolia CK, de Sabóia-Morais SMT (2017) Genotoxic and mutagenic assessment of iron oxide (maghemite-γ-Fe2O3) nanoparticle in the guppy Poecilia reticulata. Chemosphere 183:305–314 Rao L, Cai B, Bu L-L, Liao Q-Q, Guo S-S, Zhao X-Z, Dong W-F, Liu W (2017) Microfluidic electroporation-facilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy. ACS Nano 11(4):3496–3505 Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, Hu Y, Wu J (2017) Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater 59:269–282 Rizvi SI, Maurya PK (2007) Markers of oxidative stress in erythrocytes during aging in humans. Ann N Y Acad Sci 1100(1):373–382 Robertson JD (1959) The ultrastructure of cell membranes and their derivatives. In: Biochemical society symposium, p 3 Rossi L, Serafini S, Cenerini L, Picardi F, Bigi L, Panzani I, Magnani M (2001) Erythrocyte-mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol Appl Biochem 33(2):85–89 Sahoo K, Karumuri S, Hikkaduwa Koralege RS, Flynn NH, Hartson S, Liu J, Ramsey JD, Kalkan AK, Pope C, Ranjan A (2017) Molecular and biocompatibility characterization of red blood cell membrane targeted and cell-penetrating-peptide-modified polymeric nanoparticles. Mol Pharm 14(7):2224–2235 Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3(2):410–420 Schönermark S, Filsinger S, Berger B, Hänsch GM (1988) The C8-binding protein of human erythrocytes: interaction with the components of the complement-attack phase. Immunology 63(4):585–590 Sekar D, Falcioni ML, Barucca G, Falcioni G (2014) DNA damage and repair following in vitro exposure to two different forms of titanium dioxide nanoparticles on trout erythrocyte. Environ Toxicol 29(1):117–127 Serafini S, Rossi L, Antonelli A, Fraternale A, Cerasi A, Crinelli R, Chiarantini L, Schiavano G, Magnani M (2004) Drug delivery through phagocytosis of red blood cells. Transfus Med Hemother 31(2):92–101 Shah J, Singh S (2018) Unveiling the role of ATP in amplification of intrinsic peroxidase-like activity of gold nanoparticles. 3 Biotech 8(1):67 Shah J, Purohit R, Singh R, Karakoti AS, Singh S (2015) ATP-enhanced peroxidase-like activity of gold nanoparticles. J Colloid Interface Sci 456:100–107 Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ (2014) Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 37(3):336–347 Shrivastava R, Kushwaha P, Bhutia YC, Flora S (2016) Oxidative stress following exposure to silver and gold nanoparticles in mice. Toxicol Ind Health 32(8):1391–1404 Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175(4023):720–731 Singh S (2017) Glucose decorated gold nanoclusters: a membrane potential independent fluorescence probe for rapid identification of cancer cells expressing Glut receptors. Colloids Surf, B 155:25–34 Skalak R, Branemark P (1969) Deformation of red blood cells in capillaries. Science 164(3880):717–719 Srinivas A, Rao PJ, Selvam G, Goparaju A, Murthy BP, Reddy NP (2012) Oxidative stress and inflammatory responses of rat following acute inhalation exposure to iron oxide nanoparticles. Hum Exp Toxicol 31(11):1113–1131 Steck TL (1974) The organization of proteins in the human red blood cell membrane: a review. J Cell Biol 62(1):1 Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y (2017) Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics 7(3):523 Sun Y, Su J, Liu G, Chen J, Zhang X, Zhang R, Jiang M, Qiu M (2017) Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 96:115–128 Toumey C (2015) Thank you, Royal Society. Nat Nanotechnol 10(4):291 Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Can Res 69(22):8784–8789 Trpkovic A, Todorovic-Markovic B, Kleut D, Misirkic M, Janjetovic K, Vucicevic L, Pantovic A, Jovanovic S, Dramicanin M, Markovic Z (2010) Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C60) nanoparticles. Nanotechnology 21(37):375102 Tsai RK, Rodriguez PL, Discher DE (2010) Self inhibition of phagocytosis: the affinity of ‘marker of self’CD47 for SIRPα dictates potency of inhibition but only at low expression levels. Blood Cells Mol Dis 45(1):67–74 Tu J, Bussmann J, Du G, Gao Y, Bouwstra JA, Kros A (2018) Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. Int J Pharm 543(1–2):169–178 Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S (2013) Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5(22):10729–10752 Turkez H, Yousef MI, Sönmez E, Togar B, Bakan F, Sozio P, Stefano AD (2014) Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells. J Appl Toxicol 34(4):373–379 Vallabani NS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8(6):279 Vallabani NS, Karakoti AS, Singh S (2017) ATP-mediated intrinsic peroxidase-like activity of Fe3O4-based nanozyme: one step detection of blood glucose at physiological pH. Colloids Surf, B 153:52–60 Villa CH, Seghatchian J, Muzykantov V (2016) Drug delivery by erythrocytes: “Primum non nocere”. Transfus Apheres Sci 55(3):275–280 Wang X, Li H, Liu X, Tian Y, Guo H, Jiang T, Luo Z, Jin K, Kuai X, Liu Y (2017) Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials 143:130–141 Waugh R, Evans E (1979) Thermoelasticity of red blood cell membrane. Biophys J 26(1):115–131 Xia Q, Li H, Liu Y, Zhang S, Feng Q, Xiao K (2017) The effect of particle size on the genotoxicity of gold nanoparticles. J Biomed Mater Res, Part A 105(3):710–719 Xuan M, Shao J, Zhao J, Li Q, Dai L, Li J (2018) Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy. Angew Chemie Int Ed 57(21):6049–6053 Yallapu MM, Ebeling MC, Chauhan N, Jaggi M, Chauhan SC (2011) Interaction of curcumin nanoformulations with human plasma proteins and erythrocytes. Int J Nanomed 6:2779 Yoo J-W, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discovery 10(7):521 Zaitsev S, Kowalska MA, Neyman M, Carnemolla R, Tliba S, Ding B-S, Stonestrom A, Spitzer D, Atkinson JP, Poncz M (2012) Targeting recombinant thrombomodulin fusion protein to red blood cells provides multifaceted thromboprophylaxis. Blood 119(20):4779–4785 Zhang X-D, Wu D, Shen X, Liu P-X, Yang N, Zhao B, Zhang H, Sun Y-M, Zhang L-A, Fan F-Y (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071 Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS-Y (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2):1366–1375