External validation of a Cox prognostic model: principles and methods

BMC Medical Research Methodology - Tập 13 Số 1 - 2013
Patrick Royston1, Douglas G. Altman2
1Hub for Trials Methodology Research, MRC Clinical Trials Unit and University College London, Kingsway country London, UK
2Centre for Statistics in Medicine, University of Oxford, Wolfson College, Oxford, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altman DG, Royston P: What do we mean by validating a prognostic model?. Stat Med. 2000, 19: 453-473. 10.1002/(SICI)1097-0258(20000229)19:4<453::AID-SIM350>3.0.CO;2-5.

Moons KGM, Royston P, Vergouwe Y, Altman DG: Prognosis and prognostic research: what, why, and how?. Br Med J. 2009, 338: b375-10.1136/bmj.b375.

Moons KGM, Altman DG, Vergouwe Y, Royston P: Prognosis and prognostic research: Application and impact of prognostic models in clinical practice. Br Med J. 2009, 338: b606-10.1136/bmj.b606.

Miller ME, Hui SL: Validation techniques for logistic regression models. Stat Med. 1991, 10: 1213-1226. 10.1002/sim.4780100805.

Hosmer DW, Lemeshow S: Applied Logistic Regression. 2000, New York: Wiley

Harrell FE: Regression Modeling Strategies, with Applications to Linear Models, Logistic Regression, and Survival Analysis. 2001, New York: Springer

Steyerberg EW: Clinical Prediction Models. 2009, Heidelberg: Springer

Vergouwe Y, Steyerberg EW, Eijkemans MJC, Habbema JDF: Substantial effective sample sizes were required for external validation studies of predictive logistic regression models. J Clin Epidemiol. 2005, 58: 475-483. 10.1016/j.jclinepi.2004.06.017.

Altman DG, Vergouwe Y, Royston P, Moons KGM: Prognosis and prognostic research: validating a prognostic model. Brit Med J. 2009, 338: b605-10.1136/bmj.b605.

Feinstein AR: Multivariable Analysis. 1996, New Haven: Yale University Press

Justice AC, Covinsky KE, Berlin JA: Assessing the generalizability of prognostic information. Ann Intern Med. 1999, 130: 515-524. 10.7326/0003-4819-130-6-199903160-00016.

van Houwelingen: Validation, calibration, revision and combination of prognostic survival models. Stat Med. 2000, 19: 3401-3415. 10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2.

Burton A, Altman DG: Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines. Brit J Cancer. 2004, 91: 4-8. 10.1038/sj.bjc.6601907.

Mallett S, Royston P, Dutton S, Waters R, Altman DG: Reporting methods in studies developing prognostic models in cancer: a review. BMC Med. 2010, 8: 20-10.1186/1741-7015-8-20.

Royston P, Lambert PC: Flexible Parametric Survival Analysis Using Stata: Beyond the Cox model. 2011, StataPress: College Station

Foekens J, Peters H, Look M, Portengen H, Schmitt M, Kramer M, Brunner N, Jänicke F, Meijer-van Gelder, Henzen-Logmans S, van Putten, Klijn J: The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res. 2000, 60: 636-643.

Valsecchi MG, Miller ME, Hui SL: Evaluation of long-term survival: use of diagnostic and robust estimators with Cox’s proportional hazards model. Stat Med. 1996, 15: 2763-2780. 10.1002/(SICI)1097-0258(19961230)15:24<2763::AID-SIM319>3.0.CO;2-O.

Schumacher M, Bastert G, Bojar H, Hübner K, Olschweski M, Sauerbrei W, Schmoor C, Beyerle C, Neumann RLA, Rauschecker HF: Randomized 2×2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. J Clin Oncol. 1994, 12: 2086-2093.

Royston P, Sauerbrei W: Multivariable Model-Building: A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modelling Continuous Variables. 2008, Chichester: Wiley

Durrleman S, Simon R: Flexible regression-models with cubic-splines. Stat Med. 1989, 8: 551-561. 10.1002/sim.4780080504.

Royston P, Altman DG, Sauerbrei W: Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006, 25: 127-141. 10.1002/sim.2331.

Mallett S, Royston P, Waters R, Dutton S, Altman DG: Reporting performance of prognostic models in cancer: a review. BMC Med. 2010, 8: 21-10.1186/1741-7015-8-21.

Teasdale G, Jennett B: Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974, 304: 81-84. 10.1016/S0140-6736(74)91639-0.

Anyanwu AC, Rogers CA, Murday AJ: A simple approach to risk stratification in adult heart disease. Eur J Cardiothorac Surg. 1999, 16: 424-428. 10.1016/S1010-7940(99)00238-9.

Kent JT, O’Quigley J: Measures of dependence for censored survival data. Biometrika. 1988, 75: 525-534. 10.1093/biomet/75.3.525.

Royston P, Sauerbrei W: A new measure of prognostic separation in survival data. Stat Med. 2004, 23: 723-748. 10.1002/sim.1621.

Kalbfleisch JD, Prentice RL: The Statistical Analysis of Failure Time Data. 2002, New York: Wiley

StataCorp Stata Release 12. 2011, Stata Press

Altman DG: Prognostic models: a methodological framework and review of models for breast cancer. Cancer Invest. 2009, 27: 235-243. 10.1080/07357900802572110.

Cox DR: Note on grouping. J Am Stat Assoc. 1957, 52: 543-547. 10.1080/01621459.1957.10501411.

Vergouwe Y, Moons KGM, Steyerberg EW: External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol. 2010, 172: 971-980. 10.1093/aje/kwq223.

Choodari-Oskooei B, Royston P, Parmar MKB, A simulation study of predictive ability measures in a survival model I: explained variation measures. Stat Med. 2012, 31: 2627-2643. 10.1002/sim.4242.

Hielscher T, Zucknick M, Werft W, Benner A: On the prognostic value of survival models with application to gene expression signatures. Stat Med. 2010, 29: 818-829. 10.1002/sim.3768.

Harrell FE, Califf RM, Prior DB, Lee KL, Rosati RA: Evaluating the yield of medical tests. J Am Med Assoc. 1982, 247: 2543-2546. 10.1001/jama.1982.03320430047030.

Gönen M, Heller G: Concordance probability and discriminatory power in proportional hazards regression. Biometrika. 2005, 92: 965-970. 10.1093/biomet/92.4.965.

Graf E, Schmoor C, Sauerbrei W, Schumacher M: Assessment and comparison of prognostic classification schemes for survival data. Stat Med. 1999, 18: 2529-2545. 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5.

Zheng Y, Cai T, Pepe MS, Levy WC: Time-dependent predictive values of prognostic biomarkers with failure time outcome. J Am Stat Assoc. 2008, 103: 362-368. 10.1198/016214507000001481.

Bland MJ, Altman DG: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986, 8: 307-310.

Harrell FE: rms:S functions for biostatistical/epidemiologic modeling, testing, estimation, validation, graphics, prediction, and typesetting by storing enhanced model design attributes in the fit. Implements methods in Regression Modeling Strategies. 2001, New York: Springer, Available from [ http://biostat.mc.vanderbilt.edu/rms ] 2013

Henderson R, Keiding N: Individual survival time prediction using statistical models. J Med Ethics. 2005, 31: 703-706. 10.1136/jme.2005.012427.

Janssen KJ, Moons KG, Kalkman CJ, Grobbee DE, Vergouwe Y: Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol. 2008, 61: 76-86. 10.1016/j.jclinepi.2007.04.018.

Ivanov J, Tu JV, Naylor C: Ready-made, recalibrated, or remodeled? Issues in the use of risk indexes for assessing mortality after coronary artery bypass graft surgery. Circulation. 1999, 99: 2098-2104. 10.1161/01.CIR.99.16.2098.

Jinks RC: Sample size for multivariable prognostic models. PhD thesis. 2012, London: University College

Dunkler D, Michiels S, Schemper M: Gene expression profiling: Does it add predictive accuracy to clinical characteristics in cancer prognosis?. Eur J Cancer. 2007, 43: 745-751. 10.1016/j.ejca.2006.11.018.

Royston P, Parmar MKB: Flexible proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. Stat Med. 2002, 21: 2175-2197. 10.1002/sim.1203.