Stable super-resolution limit and smallest singular value of restricted Fourier matrices

Applied and Computational Harmonic Analysis - Tập 51 - Trang 118-156 - 2021
Weilin Li1, Wenjing Liao2
1Courant Institute of Mathematical Sciences, New York University, United States of America
2School of Mathematics, Georgia Institute of Technology, United States of America

Tài liệu tham khảo

Fannjiang, 2010, Compressed remote sensing of sparse objects, SIAM J. Imaging Sci., 3, 595, 10.1137/090757034 Fannjiang Fannjiang, 2010, Compressive inverse scattering: I. high-frequency simo/miso and mimo measurements, Inverse Probl., 26, 10.1088/0266-5611/26/3/035008 Krim, 1996, Two decades of array signal processing research: the parametric approach, IEEE Signal Process. Mag., 13, 67, 10.1109/79.526899 Schmidt, 1986, Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag., 34, 276, 10.1109/TAP.1986.1143830 Stoica, 1997 Den Dekker, 1997, A survey, J. Opt. Soc. Am., 14, 547, 10.1364/JOSAA.14.000547 Riche de Prony, 1795, Essai expérimentale et analytique, J. Éc. Polytech., 1, 24 Batenkov, 2013, On the accuracy of solving confluent Prony systems, SIAM J. Appl. Math., 73, 134, 10.1137/110836584 Golub, 2003, Separable nonlinear least squares: the variable projection method and its applications, Inverse Probl., 19, R1, 10.1088/0266-5611/19/2/201 Beylkin, 2005, On approximation of functions by exponential sums, Appl. Comput. Harmon. Anal., 19, 17, 10.1016/j.acha.2005.01.003 Potts, 2010, Parameter estimation for exponential sums by approximate Prony method, Signal Process., 90, 1631, 10.1016/j.sigpro.2009.11.012 Roy, 1989, ESPRIT – estimation of signal parameters via rotational invariance techniques, IEEE Trans. Acoust. Speech Signal Process., 37, 984, 10.1109/29.32276 Hua, 1990, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Signal Process., 38, 814, 10.1109/29.56027 Candès, 2013, Super-resolution from noisy data, J. Fourier Anal. Appl., 19, 1229, 10.1007/s00041-013-9292-3 Fernandez-Granda, 2013, Support detection in super-resolution, 145 Azaïs, 2015, Spike detection from inaccurate samplings, Appl. Comput. Harmon. Anal., 38, 177, 10.1016/j.acha.2014.03.004 Duval, 2015, Exact support recovery for sparse spikes deconvolution, Found. Comput. Math., 15, 1315, 10.1007/s10208-014-9228-6 Li Duarte, 2013, Spectral compressive sensing, Appl. Comput. Harmon. Anal., 35, 111, 10.1016/j.acha.2012.08.003 Fannjiang, 2012, Coherence-pattern guided compressive sensing with unresolved grids, SIAM J. Imaging Sci., 5, 179, 10.1137/110838509 Bredies, 2013, Inverse problems in spaces of measures, ESAIM Control Optim. Calc. Var., 19, 190, 10.1051/cocv/2011205 Boyd, 2017, The alternating descent conditional gradient method for sparse inverse problems, SIAM J. Optim., 27, 616, 10.1137/15M1035793 Denoyelle, 2019, The sliding Frank–Wolfe algorithm and its application to super-resolution microscopy, Inverse Probl., 36, 10.1088/1361-6420/ab2a29 Fannjiang, 2011, The MUSIC algorithm for sparse objects: a compressed sensing analysis, Inverse Probl., 27, 10.1088/0266-5611/27/3/035013 Liao, 2016, MUSIC for single-snapshot spectral estimation: stability and super-resolution, Appl. Comput. Harmon. Anal., 40, 33, 10.1016/j.acha.2014.12.003 Liao, 2015, Music for multidimensional spectral estimation: stability and super-resolution, IEEE Trans. Signal Process., 63, 6395, 10.1109/TSP.2015.2463255 Moitra, 2015, Super-resolution, extremal functions and the condition number of Vandermonde matrices Fannjiang, 2011, Mismatch and resolution in compressive imaging Chi, 2011, Sensitivity to basis mismatch in compressed sensing, IEEE Trans. Signal Process., 59, 2182, 10.1109/TSP.2011.2112650 Candès, 2006, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52, 489, 10.1109/TIT.2005.862083 Donoho, 2006, Compressed sensing, IEEE Trans. Inf. Theory, 52, 1289, 10.1109/TIT.2006.871582 Morgenshtern, 2016, Super-resolution of positive sources: the discrete setup, SIAM J. Imaging Sci., 9, 412, 10.1137/15M1016552 Denoyelle, 2017, Support recovery for sparse super-resolution of positive measures, J. Fourier Anal. Appl., 23, 1153, 10.1007/s00041-016-9502-x Morgenshtern Benedetto, 2020, Super-resolution by means of Beurling minimal extrapolation, Appl. Comput. Harmon. Anal., 48, 218, 10.1016/j.acha.2018.05.002 Donoho, 1992, Superresolution via sparsity constraints, SIAM J. Math. Anal., 23, 1309, 10.1137/0523074 Demanet Batenkov Odendaal, 1994, Two-dimensional superresolution radar imaging using the music algorithm, IEEE Trans. Antennas Propag., 42, 1386, 10.1109/8.320744 Stoica, 1995, On the resolution performance of spectral analysis, Signal Process., 44, 153, 10.1016/0165-1684(95)00021-5 Lee, 1992, The Cramér–Rao bound on frequency estimates of signals closely spaced in frequency, IEEE Trans. Signal Process., 40, 1507, 10.1109/78.139253 Lee, 1992, Eigenvalues and eigenvectors of covariance matrices for signals closely spaced in frequency, IEEE Trans. Signal Process., 40, 2518, 10.1109/78.157293 Turán, 1946, On rational polynomials, Acta Univ. Szeged., Sect. Sci. Math., 106 Noga, 1992, Uniform dilations, Geom. Funct. Anal., 2, 1, 10.1007/BF01895704 Konyagin, 2000, On uniformly distributed dilates of finite integer sequences, J. Number Theory, 82, 165, 10.1006/jnth.1999.2420 Gautschi, 1987, Lower bounds for the condition number of Vandermonde matrices, Numer. Math., 52, 241, 10.1007/BF01398878 Beckermann, 2000, The condition number of real Vandermonde, Krylov and positive definite Hankel matrices, Numer. Math., 85, 553, 10.1007/PL00005392 Eisinberg, 2001, Rectangular Vandermonde matrices on Chebyshev nodes, Linear Algebra Appl., 338, 27, 10.1016/S0024-3795(01)00355-X Eisinberg, 2001, Vandermonde matrices on integer nodes: the rectangular case, Numer. Math., 87, 663, 10.1007/PL00005428 Ryan, 2009, Asymptotic behavior of random Vandermonde matrices with entries on the unit circle, IEEE Trans. Inf. Theory, 55, 3115, 10.1109/TIT.2009.2021317 Tucci, 2011, Eigenvalue results for large scale random Vandermonde matrices with unit complex entries, IEEE Trans. Inf. Theory, 57, 3938, 10.1109/TIT.2011.2137110 Tucci, 2014, Asymptotic behavior of the maximum and minimum singular value of random Vandermonde matrices, J. Theor. Probab., 27, 826, 10.1007/s10959-012-0466-8 Bazán, 2000, Conditioning of rectangular Vandermonde matrices with nodes in the unit disk, SIAM J. Matrix Anal. Appl., 21, 679, 10.1137/S0895479898336021 Aubel, 2017, Vandermonde matrices with nodes in the unit disk and the large sieve, Appl. Comput. Harmon. Anal. Ferreira, 1999, Super-resolution, the recovery of missing samples and Vandermonde matrices on the unit circle Berman, 2007, On perfect conditioning of Vandermonde matrices on the unit circle, Electron. J. Linear Algebra, 16, 13 Walter, 1962, On inverses of Vandermonde and confluent Vandermonde matrices, Numer. Math., 4, 117, 10.1007/BF01386302 Batenkov, 2020, Conditioning of partial nonuniform Fourier matrices with clustered nodes, SIAM J. Matrix Anal. Appl., 41, 199, 10.1137/18M1212197 Kunis, 2020, On the condition number of Vandermonde matrices with pairs of nearly-colliding nodes, Numer. Algorithms, 1 Diederichs Kunis, 2020, On the smallest singular value of multivariate Vandermonde matrices with clustered nodes, Linear Algebra Appl., 604, 1, 10.1016/j.laa.2020.06.003 Batenkov, 2021, The spectral properties of Vandermonde matrices with clustered nodes, Linear Algebra Appl., 609, 37, 10.1016/j.laa.2020.08.034 Barnett Candes, 2008, The restricted isometry property and its implications for compressed sensing, C. R. Math., 346, 589, 10.1016/j.crma.2008.03.014 Rudelson, 2008, On sparse reconstruction from Fourier and Gaussian measurements, Commun. Pure Appl. Math., 61, 1025, 10.1002/cpa.20227 Liu Wedin, 1972, Perturbation bounds in connection with singular value decomposition, BIT Numer. Math., 12, 99, 10.1007/BF01932678 Meckes, 2007, On the spectral norm of a random Toeplitz matrix, Electron. Commun. Probab., 12, 315, 10.1214/ECP.v12-1313 Adamczak, 2010, A few remarks on the operator norm of random Toeplitz matrices, J. Theor. Probab., 23, 85, 10.1007/s10959-008-0201-7 Tropp, 2012, User-friendly tail bounds for sums of random matrices, Found. Comput. Math., 12, 389, 10.1007/s10208-011-9099-z Stoica, 1989, Maximum likelihood, and Cramer–Rao bound, IEEE Trans. Acoust. Speech Signal Process., 37, 720, 10.1109/29.17564 Ottersten, 1991, Performance analysis of the total least squares esprit algorithm, IEEE Trans. Signal Process., 39, 1122, 10.1109/78.80967 Fannjiang Li, 2020, Super-resolution limit of the esprit algorithm, IEEE Trans. Inf. Theory, 66, 4593, 10.1109/TIT.2020.2974174