Mutation in triangulated categories and rigid Cohen–Macaulay modules
Tóm tắt
We introduce the notion of mutation of n-cluster tilting subcategories in a triangulated category with Auslander–Reiten–Serre duality. Using this idea, we are able to obtain the complete classifications of rigid Cohen–Macaulay modules over certain Veronese subrings.
Tài liệu tham khảo
Artin, M., Verdier, J.-L.: Reflexive modules over rational double points. Math. Ann. 270(1), 79–82 (1985)
Auslander, M.: Coherent functors. In: Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pp. 189–231. Springer, New York (1966)
Auslander, M.: Rational singularities and almost split sequences. Trans. Am. Math. Soc. 293(2), 511–531 (1986)
Auslander, M.: Functors and morphisms determined by objects. In: Representation Theory of Algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), pp. 1–244. Lect. Notes Pure Appl. Math., vol. 37. Dekker, New York (1978)
Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen–Macaulay approximations. In: Colloque en l’h onneur de Pierre Samuel (Orsay, 1987). Mem. Soc. Math. France (N.S.), vol. 38, pp. 5–37 (1989)
Auslander, M., Platzeck, M.I., Reiten, I.: Coxeter functors without diagrams. Trans. Am. Math. Soc. 250, 1–46 (1979)
Auslander, M., Reiten, I.: Stable equivalence of dualizing R-varieties. Adv. Math. 12, 306–366 (1974)
Auslander, M., Reiten, I.: The Cohen–Macaulay type of Cohen–Macaulay rings. Adv. Math. 73(1), 1–23 (1989)
Auslander, M., Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. 86(1), 111–152 (1991)
Auslander, M., Reiten, I.: DTr-periodic modules and functors. Representation theory of algebras (Cocoyoc, 1994). CMS Conf. Proc., vol. 18, pp. 39–50. Am. Math. Soc., Providence, RI (1996)
Auslander, M., Reiten, I., Smalo, S.O.: Representation theory of Artin algebras. Camb. Stud. Adv. Math., vol. 36. Cambridge University Press, Cambridge (1995)
Auslander, M., Smalo, S.O.: Almost split sequences in subcategories. J. Algebra 69(2), 426–454 (1981)
Baur, K., Marsh, R.: A geometric description of m-cluster categories. arXiv:math.RT/0607151
Beligiannis, A., Reiten, I.: Homological Aspects of Torsion Theories. Mem. Am. Math. Soc., vol. 188. Am. Math. Soc. (2007)
Benson, D.J.: Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, 2nd edn. Camb. Stud. Adv. Math., vol. 30. Cambridge University Press, Cambridge (1998)
Bernšteĭ n, I.N., Gelfand, I.M., Ponomarev, V.A.: Coxeter functors, and Gabriel’s theorem. Uspehi Mat. Nauk 28(2), 19–33 (1973)
Bezrukavnikov, R., Kaledin, D.: McKay equivalence for symplectic resolutions of quotient singularities. Tr. Mat. Inst. Steklova 246, 20–42 (2004) (translation in Proc. Steklov Inst. Math. 246(3), 13–33 (2004))
Brenner, S., Butler, M.C.R.: Generalizations of the Bernstein–Gelfand–Ponomarev reflection functors. Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), pp. 103–169, Lect. Notes Math., vol. 832. Springer, Berlin New York (1980)
Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)
Buan, A., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi–Yau categories and unipotent groups. arXiv:math/0701557
Buan, A., Marsh, R., Reiten, I.: Cluster-tilted algebras. Trans. Am. Math. Soc. 359(1), 323–332 (2007)
Buan, A., Marsh, R., Reiten, I.: Cluster mutation via quiver representations. Comm. Math. Helv. 83(1), 143–177 (2008) (arXiv:math.RT/0412077)
Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204(2), 572–618 (2006)
Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and reconstructions. Math. USSR-Izv. 35(3), 519–541 (1990)
Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (An case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006)
Caldero, P., Keller, B.: From triangulated categories to cluster algebras II. Ann. Sci. Éc. Norm. Supér., IV. Sér. 39(6), 983–1009 (2006)
Crawley-Boevey, W.W.: On tame algebras and bocses. Proc. Lond. Math. Soc. (3) 56(3), 451–483 (1988)
Derksen, H., Weyman, J.: On the canonical decomposition of quiver representations. Compos. Math. 133(3), 245–265 (2002)
Drozd, Y.A.: Tame and wild matrix problems. Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979). Lect. Notes Math., vol. 832, pp. 242–258. Springer, Berlin New York (1980)
Drozd, Y.A., Greuel, G.-M.: Tame-wild dichotomy for Cohen–Macaulay modules. Math. Ann. 294(3), 387–394 (1992)
Erdmann, K., Holm, T.: Maximal n-orthogonal modules for selfinjective algebras. Proc. Am. Math. Soc. (to appear), arXiv:math.RT/0603672
Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)
Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)
Gabriel, P., Roĭ ter, A.V.: Representations of finite-dimensional algebras. Encyclopaedia Math. Sci. 73, Algebra, VIII, 1–177. Springer, Berlin (1992) (With a chapter by Keller, B.)
Geiss, C., Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras. Invent. Math. 165(3), 589–632 (2006)
Gonzalez-Sprinberg, G., Verdier, J.-L.: Structure multiplicative des modules reflexifs sur les points doubles rationnels. Geometrie algebrique et applications, I (La Rabida, 1984). Travaux en Cours, vol. 22, pp. 79–110. Hermann, Paris (1987)
Gorodentsev, A.L., Rudakov, A.N.: Exceptional vector bundles on projective spaces. Duke Math. J. 54(1), 115–130 (1987)
Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras. Lond. Math. Soc. Lect. Note Ser., vol. 119. Cambridge University Press, Cambridge (1988)
Ito, Y., Nakajima, H.: McKay correspondence and Hilbert schemes in dimension three. Topology 39(6), 1155–1191 (2000)
Iyama, O.: Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories. Adv. Math. 210(1), 22–50 (2007)
Iyama, O.: Auslander correspondence. Adv. Math. 210(1), 51–82 (2007)
Iyama, O.: Maximal orthogonal subcategories of triangulated categories satisfying Serre duality. Oberwolfach, Rep. 2(1), 353–355 (2005)
Iyama, O., Reiten, I.: Fomin–Zelevinsky mutation and tilting modules over Calabi–Yau algebras. Am. J. Math. (to appear), arXiv:math.RT/0605136
Kac, V.G.: Infinite root systems, representations of graphs and invariant theory. Invent. Math. 56(1), 57–92 (1980)
Kapranov, M., Vasserot, E.: Kleinian singularities, derived categories and Hall algebras. Math. Ann. 316(3), 565–576 (2000)
Keller, B.: Deriving DG categories. Ann. Sci. Éc. Norm. Supér., IV. Sér. 27(1), 63–102 (1994)
Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005)
Keller, B., Vossieck, D.: Aisles in derived categories. Deuxieme Contact Franco–Belge en Algebre (Faulx-les-Tombes, 1987). Bull. Soc. Math. Belg. Ser. A 40(2), 239–253 (1988)
Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi–Yau. Adv. Math. 211(1), 123–151 (2007)
Keller, B., Reiten, I.: Acyclic Calabi–Yau categories are cluster categories. arXiv:math/0610594
Koenig, S., Zhu, B.: From triangulated categories to abelian categories–cluster tilting in a general framework. Math. Z. (to appear), arXiv:math.RT/0605100
Krause, H.: A Brown representability theorem via coherent functors. Topology 41(4), 853–861 (2002)
Krause, H.: Cohomological quotients and smashing localizations. Am. J. Math. 127(6), 1191–1246 (2005)
Kurano, K.: Private communication
Miyashita, Y.: Tilting modules of finite projective dimension. Math. Z. 193(1), 113–146 (1986)
Reiten, I., Van den Bergh, M.: Noetherian hereditary abelian categories satisfying Serre duality. J. Am. Math. Soc. 15(2), 295–366 (2002)
Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. (2) 39(3), 436–456 (1989)
Riedtmann, C., Schofield, A.: On a simplicial complex associated with tilting modules. Comment. Math. Helv. 66(1), 70–78 (1991)
Rudakov, A.N.: Helices and vector bundles. Seminaire Rudakov. Lond. Math. Soc. Lect. Note Ser., vol. 148. Cambridge University Press, Cambridge (1990)
Schofield, A.: Semi-invariants of quivers. J. Lond. Math. Soc. (2) 43(3), 385–395 (1991)
Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108(1), 37–108 (2001)
Tabuada, G.: On the structure of Calabi–Yau categories with a cluster tilting subcategory. Doc. Math. 12, 193–213 (2007)
Thomas, H.: Defining an m-cluster category. J. Algebra 318(1), 37–46 (2007)
Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)
Van den Bergh, M.: Non-commutative crepant resolutions. The legacy of Niels Henrik Abel, pp. 749–770. Springer, Berlin (2004)
Watanabe, K.: Certain invariant subrings are Gorenstein. I, II. Osaka J. Math. 11, 1–8 (1974); ibid. 11, 379–388 (1974)
Yoshino, Y.: Cohen–Macaulay modules over Cohen–Macaulay rings. Lond. Math. Soc. Lect. Note Ser., vol. 146. Cambridge University Press, Cambridge (1990)
Yoshino, Y.: Rigid Cohen–Macaulay modules over a three dimensional Gorenstein ring. Oberwolfach, Rep. 2(1), 345–347 (2005)
Zhu, B.: Generalized cluster complexes via quiver representations. J. Algebr. Comb. (to appear), arXiv:math.RT/0607155