Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm
Tài liệu tham khảo
Xuwei, 2009, Shape modeling and clustering of white matter fiber tracts using fourier descriptors. Computational intelligence in bioinformatics and computational biology. CIBCB 2009, 92
Mayer, 2011, A supervised framework for the registration and segmentation of white matter fiber tracts, IEEE Trans Med Imaging, 30, 131, 10.1109/TMI.2010.2067222
Zhang, 2008, Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method, IEEE Trans Vis Comput Graph, 14, 1044, 10.1109/TVCG.2008.52
Huang, 2011, White matter changes in healthy adolescents at familial risk for unipolar depression: a diffusion tensor imaging study, Neuropsychopharmacology, 36, 684, 10.1038/npp.2010.199
McIntosh, 2008, White matter tractography in bipolar disorder and schizophrenia, Biol Psychiatry, 64, 1088, 10.1016/j.biopsych.2008.07.026
Conturo, 2008, Neuronal fiber pathway abnormalities in autism: an initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways, J Int Neuropsychol Soc, 14, 933, 10.1017/S1355617708081381
Chen, 2015, Fiber segmentation using a density-peaks clustering algorithm Biomedical Imaging. ISBI 2015, 633
O’Donnell, 2006, High-dimensional white matter atlas generation and group analysis, 243
Li, 2010, A hybrid approach to automatic clustering of white matter fibers, Neuroimage, 49, 1249, 10.1016/j.neuroimage.2009.08.017
Jain, 2010, Data clustering: 50 years beyond K-means, Pattern Recognit Lett, 31, 651, 10.1016/j.patrec.2009.09.011
Moberts, 2005, Evaluation of fiber clustering methods for diffusion tensor imaging, 65
O’Donnell, 2005, White matter tract clustering and correspondence in populations, 140
Guido, 2004, Analysis of brain white matter via fiber tract modeling, vol. 2, 4421
Wang, 2013, Application of neuroanatomical features to tractography clustering, Hum Brain Mapp, 34, 2089, 10.1002/hbm.22051
Guevara, 2012, Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas, Neuroimage, 61, 1083, 10.1016/j.neuroimage.2012.02.071
Jin, 2014, Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics, Neuroimage, 100, 75, 10.1016/j.neuroimage.2014.04.048
Jiang, 2006, DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking, Comput Methods Progr Biomed, 81, 106, 10.1016/j.cmpb.2005.08.004
Yousri, 2007, Adaptive similarity search in metric trees, 419
Cimbala, 2011
Zahn, 1971, Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans Comput, 100, 68, 10.1109/T-C.1971.223083
Yousri, 2009, A distance-relatedness dynamic model for clustering high dimensional data of arbitrary shapes and densities, Pattern Recognit, 42, 1193, 10.1016/j.patcog.2008.08.037
Claude Elwood, 2001, A mathematical theory of communication, ACM SIGMOBILE Mobile Comput Commun Rev, 5, 3, 10.1145/584091.584093
Miller, 2003, A new class of entropy estimators for multi-dimensional densities, vol. 3
Davoud, 2014, Density-based clustering validation, 839
http://lbam.med.jhmi.edu (Accessed: 20.05.16).
Wakana, 2007, Reproducibility of quantitative tractography methods applied to cerebral white matter, Neuroimage, 36, 630, 10.1016/j.neuroimage.2007.02.049
Murguía, 2003, Estimating the effect of the similarity coefficient and the cluster algorithm on biogeographic classifications, 415
Karypis, 1999, Chameleon: hierarchical clustering using dynamic modeling, Computer, 32, 68, 10.1109/2.781637
Shi, 2000, Normalized cuts and image segmentation, IEEE Trans Pattern Anal Mach Intell, 22, 888, 10.1109/34.868688
Ester, 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, Kdd, 96, 226