Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm

Artificial Intelligence in Medicine - Tập 73 - Trang 14-22 - 2016
Tahereh Kamali1, Daniel Stashuk1
1Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

Tài liệu tham khảo

Xuwei, 2009, Shape modeling and clustering of white matter fiber tracts using fourier descriptors. Computational intelligence in bioinformatics and computational biology. CIBCB 2009, 92 Mayer, 2011, A supervised framework for the registration and segmentation of white matter fiber tracts, IEEE Trans Med Imaging, 30, 131, 10.1109/TMI.2010.2067222 Zhang, 2008, Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method, IEEE Trans Vis Comput Graph, 14, 1044, 10.1109/TVCG.2008.52 Huang, 2011, White matter changes in healthy adolescents at familial risk for unipolar depression: a diffusion tensor imaging study, Neuropsychopharmacology, 36, 684, 10.1038/npp.2010.199 McIntosh, 2008, White matter tractography in bipolar disorder and schizophrenia, Biol Psychiatry, 64, 1088, 10.1016/j.biopsych.2008.07.026 Conturo, 2008, Neuronal fiber pathway abnormalities in autism: an initial MRI diffusion tensor tracking study of hippocampo-fusiform and amygdalo-fusiform pathways, J Int Neuropsychol Soc, 14, 933, 10.1017/S1355617708081381 Chen, 2015, Fiber segmentation using a density-peaks clustering algorithm Biomedical Imaging. ISBI 2015, 633 O’Donnell, 2006, High-dimensional white matter atlas generation and group analysis, 243 Li, 2010, A hybrid approach to automatic clustering of white matter fibers, Neuroimage, 49, 1249, 10.1016/j.neuroimage.2009.08.017 Jain, 2010, Data clustering: 50 years beyond K-means, Pattern Recognit Lett, 31, 651, 10.1016/j.patrec.2009.09.011 Moberts, 2005, Evaluation of fiber clustering methods for diffusion tensor imaging, 65 O’Donnell, 2005, White matter tract clustering and correspondence in populations, 140 Guido, 2004, Analysis of brain white matter via fiber tract modeling, vol. 2, 4421 Wang, 2013, Application of neuroanatomical features to tractography clustering, Hum Brain Mapp, 34, 2089, 10.1002/hbm.22051 Guevara, 2012, Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas, Neuroimage, 61, 1083, 10.1016/j.neuroimage.2012.02.071 Jin, 2014, Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics, Neuroimage, 100, 75, 10.1016/j.neuroimage.2014.04.048 Jiang, 2006, DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking, Comput Methods Progr Biomed, 81, 106, 10.1016/j.cmpb.2005.08.004 Yousri, 2007, Adaptive similarity search in metric trees, 419 Cimbala, 2011 Zahn, 1971, Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Trans Comput, 100, 68, 10.1109/T-C.1971.223083 Yousri, 2009, A distance-relatedness dynamic model for clustering high dimensional data of arbitrary shapes and densities, Pattern Recognit, 42, 1193, 10.1016/j.patcog.2008.08.037 Claude Elwood, 2001, A mathematical theory of communication, ACM SIGMOBILE Mobile Comput Commun Rev, 5, 3, 10.1145/584091.584093 Miller, 2003, A new class of entropy estimators for multi-dimensional densities, vol. 3 Davoud, 2014, Density-based clustering validation, 839 http://lbam.med.jhmi.edu (Accessed: 20.05.16). Wakana, 2007, Reproducibility of quantitative tractography methods applied to cerebral white matter, Neuroimage, 36, 630, 10.1016/j.neuroimage.2007.02.049 Murguía, 2003, Estimating the effect of the similarity coefficient and the cluster algorithm on biogeographic classifications, 415 Karypis, 1999, Chameleon: hierarchical clustering using dynamic modeling, Computer, 32, 68, 10.1109/2.781637 Shi, 2000, Normalized cuts and image segmentation, IEEE Trans Pattern Anal Mach Intell, 22, 888, 10.1109/34.868688 Ester, 1996, A density-based algorithm for discovering clusters in large spatial databases with noise, Kdd, 96, 226