Lignocellulolytic Enzyme Production by Aquatic Hyphomycetes Species Isolated from the Nile's Delta Region

Mycopathologia et mycologia applicata - Tập 157 - Trang 277-286 - 2004
A.M. Abdel-Raheem1, E.H. Ali2
1Faculty of Science, Botany Department, South Valley University, Sohag, Egypt
2Faculty of Science, Botany Department, Assiut University, Assiut, Egypt

Tóm tắt

Twenty-six species of aquatic hyphomycetes were isolatedfrom woody sources (unidentified wood segments, leaf skeletons and neck of leaves and bark)in the North River Nile (Delta region). Alatospora acuminata, Anguillospora crassa,Flagellaspora penicillioides, Lunulospra curvula, Tetracladiummarchalianum and Triscelophorus monosporus were the most common species.Temperature was the highest physico-chemical parameter affecting the aquatic hyphomycetesoccurrence. Twelve species of hyphomycetes, isolated from woody substrates, were screenedfor their ability to produce extracellular lignocellulolytic enzymes on solid media. Theenzymes tested included: endoglucanase, endoxylanase, β-glucosidase, laccase,peroxidase, polyphenoloxidase, tyrosinase and β-xylosidase. Three species,A. acuminata, F. penicillioides, T. monosporus,were positive for all tested enzymes. Also, A. longissimawas positive for all enzymes except lignin-peroxidase. The ability to producecellulase was 100% for all species while only, four species were positive for lignin-peroxidase.The ability of the species to produce other lignocellulotic enzyme ranged from 50%to 83%. Freshwater hyphomycetes have been shown to produce a rich array of enzymes ableto degrade the polysaccharides of plant debris.

Tài liệu tham khảo

Abdel-Raheem, A.M. Colonization pattern of aquatic hyphomycetes on leaf packs in subtropical stream. Mycopathologia 1997; 138: 163–171. Aimer RD. Ecology of aquatic hyphomycetes in New Zealand streams. Ph.D. thesis, University of Waikato, New Zealand, 1989. Bärlocher F. Fungal colonization of fresh and dried leaves in the River Teign. Nova Hedwigia 1991; 52: 349–357. Bärlocher F, Kendrick B, Michaelides J. Colonization and conditioning of Pinus resinosa by aquatic hyphomycetes. Arch Hydrobiol 1978; 81: 462–474. Cowling SW, Waid JS. aquatic hyphomycetes, in Australia. Aust J Sci 1963; 26: 122–123. Ingold CT. Stream spora in Nigeria. Trans Brit Mycol Soc 1956; 39: 108–111. Nilsson S. Some aquatic hyphomycetes from South America. Sven Bot Tidsky 1964; 56: 351–361. Sridhar KR, Bärlocher F. Initial colonization, nutrient supply, and fungal activity on leaves decaying in streams. Appl Environ Microbiol 2000; 66: 1114–1119. Sridhar KR, Kaveriappa KM. Colonization of water-borne hyphomycetes in a tropical stream. Mycol Res 1989; 92: 392–396. Swart HJ. Preliminary survey of aquatic hyphomycetes in Victoria, Australia. Trans Br Mycol Soc 1986; 86: 497–501. Tubaki K. Studies on the Japanese hyphomycetes III Aquatic group. Bull Natl Sci Mus 1957; 41: 219–268. Zare-Maivan H, Ghaderian M. Freshwater leaf-inhabiting hyphomycetes of an Iranian river. Mycologia 1993; 85: 355–357. Abdel-Raheem AM. Studies on aquatic hyphomycetes in the river Nile near Sohag. M.Sc. Thesis, South Valley University, Egypt, 1988. Abdel-Raheem AM. Studies on freshwater phycomycetes and hyphomycetes in Upper Egypt. Ph.D. thesis, South Valley University, Egypt, 1992. Abdel-Raheem AM. Laccase activity of some lignicolous aquatic hyphomycetes isolated from the river Nile. Mycopathologia 1997; 139: 145–150. Abdel-Raheem AM, Badran R. Xylanolitic activity of some species of River Nile aquatic hyphomycetes, Acta Hydrobiologia 1997; 62: 1–8. Willoughby LG, Archer JF. The fungal spora of freshwater stream and its colonization pattern on wood. Freshwater Biol 1973; 3: 219–239. Sanders PF, Anderson JM. Colonization of wood blocks by aquatic hyphomycetes. Trans Brit Mycol Soc 1979; 73: 103–107. Shearer CA, Webster J. Aquatic hyphomycetes in the river Teign. 4. Twig colonization. Mycol Res 1991; 25: 413–420. Browining BL. The composition and chemical reactions of wood. In: Browining BL, ed. The Chemistery of Wood. John Wiley and Sons, New York, 1963; 57–102. Kirk TK, Farrell RL. Enzymatic “Composition” the microbial degradation of lignin. Ann Rev Biochem 1987; 41: 465–505. Petersen RC. The chemical composition of wood. In: Rowell RM ed. The Chemistry of Solid Wood. Advances in Chemistry Series 207. American Chemical Society, Washington 1984; 57–126. Archibald F, Roy B. Production of manganies chelates by laccase from the lignin degrading fungus Trametes (Coriolus) versicolor. Appl Environ Microbiol 1992; 58: 1496–1499. Jones EBG. Observation on the ecology of lignicolous aquatic hyphomycetes. In: Wicklow DT, Carrol GC, eds. The Fungal Community. New York: Marcel Dekker 1981; 731–742. Zare-Maivan H, Shearer CA. Wood decay activity and cellulase production by freshwater lignicolous fungi. International Biodeterioration 1988; 24: 459–474. Zare-Maivan H, Shearer CA. Extracellular enzyme production and cell wall degradation by freshwater lignicolous fungi. Mycologia 1988; 80: 365–375. Said K. The Geological Evolution of the River Nile. New York: Springer-Verlag, 1981. Ingold CT. An illustrated guide to aquatic and water-borne hyphomycetes (Fungi Imperfecti) with notes on their biology. No. 30. Freshwater Biol Assoc Sci Pub 1975. Das SB, Reddy CA. Characterization of extracellular peroxidase produced by acetate-buffered cultures of phanerochaete chrysosporium. FEMS Microbial Lett 1990; 69: 221–224. Pointing SB. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Diversity 1999; 2: 17–33. Shearer CA, Webster J. Aquatic hyphomycetes communities in the river Teign. I. Longitudinal distribution patterns. Trans Br Mycol Soc 1985; 84: 489–501. Shearer CA, Webster J. Aquatic hyphomycetes communities in the river Teign. II. Temporal distribution patterns. Trans Br Mycol Soc 1985; 84: 503–507. Sridhar KR, Kaveriappa RM. Colonization of leaf litter by aquatic hyphomycetes in tropical stream. Arch Hydrobiol 1987; 112: 627–630. Webster J. Biology and ecology of aquatic hyphomycetes. In: Wicklow GT, Carroll GC, ed. The Fungal Community, its Organization and Role the Ecosystem. New York: Marcel Dekker, 1981; 681–691. Suberkropp K. Effects of temperature on sea sonal occurrence of aquatic hyphomycetes. Trans Br Mycol Soc 1984; 82: 53–62. Bärlocher F. The ecology of aquatic hyphomycetes. Ecological Studies, Berlin/Heidelberg/New York: Springer-Verlag, 1992; 94: 1–76. Bärlocher F, Kendrick B. Dynamics of the fungal population on leaves in a stream. J Ecol 1974; 62: 76–791. Suzuki S, Nimura N. Relation between the distribution of aquatic hyphomycetes in Japanese lake types. Bot Mag 1961; 74: 51–55. Bärlocher, F. Conidium production from leaves and needles in four streams. Can J Bot 1982; 60: 1487–1494. Bärlocher F, Manuel AS. Graçat Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Frreshwater Biology 2002; 47: in press. Abdullah SR, Taj-Aldeen SJ. Extracellular enzymatic of aquatic and aero-aquatic conidial fungi, hydrobiologia 1989; 174: 217–223. Bhat D, Chien CY. Water-borne hyphomycetes found in Ethiopia, Trans Mycol Soc Jpn 1990; 31: 147–158. Chamier AC, Dixon PA, Archer SA. The spatial distribution of fungi on decomposing alder leaves in a freshwater stream. Oecologia 1984; 64: 92–103. Engblom E, Lingdell PF, Marvanovà L, Müller Haeckel A. Foam spora in running water of Southern Greenland. Polar Res 1986; 4: 47–50. Suberkropp KTL, Klug MJ. Fungi and bacteria associated with leaves during processing in woodland stream. Ecology 1976; 57: 707–719. Suberkropp KTL, Klug MJ. The fungal community. In: Wicklow DT, Carroll GC, ed. Degradation of Leaf Litter by Aquatic Hyphomycetes. New York: Marcel Dekker, 1981; 761–776. Suberkropp KTL, Arsuffi TL, Anderson JP. Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter. Appl Environ Microbiol 1983; 46: 2–244. Fisher PJ, Davey RA, Webster J. Degradation of lignin by aquatic and aero-aquatic hyphomycetes. Trans Br Mycol Soc 1983; 80: 166–168. Kirk TK, Obst JR. Lignin determination. In: Wood WA, Kellogg ST, eds. Methods in Enzymology Biomass, Part b, Lignin, Pectin and Chitin. San Diego: Academic Press, 1988; 161: 87–101. Kirk TK, Cowling EB. Biological decomposition of solid wood. American Chemical Society Series 1984; 207: 457–487. Gessner RV. Degradative enzyme production by salt march fungi. Botanica Marina 1980; 23: 133–139. Abdel-Raheem AM, Shearer AC. Extracellular enzyme production by freshwater ascomycetes. Fungal Diversity 2002; 11: 1–19. Rohrmann S, Molitoris P. Screening of wood-degrading enzymes in marine fungi. Can J Bot 1992; 70: 2116–2123. Raghukumar C, Raghukumar S, Chinnaraj A, Chandramohan D, D'Souza TM, Reddy CA. Laccase and other lignocellulose modifying enzymes of marine fungi isolated from the coast of India. Botanica Marina 1994; 37: 515–523. Highley TL. Cellulose degradation by cellulose-clearing and non-cellulose clearing brown-rot fungi. Appl Environ Microbiol 1980; 40: 1145–1147. Rayner ADM, Boddy L. Fungal Decomposition of Wood. Its Biology and Ecology. New York: John Wiley and Sons, 1988. Viikari L, Ranua M, Kantelinen A, Sundquist J, Linko M. Bleaching with enzymes. In: Proceeding. Third International Conference of Biotechnology in the Pulp and Paper Industry. Stockholm, Sweden: Swedish Association of Pulp and Paper Engineers, 1986; 1–67. Paice MG, Bernier R, Jurasek L. Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol Bioengineer 1988; 32: 235–239. Senior DJ, Mayers PR, Saddler JN. The interaction of xylanases with commercial pulps. Biotechnol Bioengineer 1991; 37: 274–279. Nakamura SK, Wakabayashi R, Nakai RA, Horikoshi K. Purification and some properties of an alkaline xylanase From alkaliphilic Bacillus sp. strain 41M-1. Appl Environ Microbiol 1993; 59: 2311–2316. Bourbonnais R, Paice G. Demethylation and delignification of kraft pulp by Tremetes versicolor laccase in the presence of 2,2-azinobis(3-ethybenzthiazoline-6-sulphonate). Appl Microbiol Biotechnol 1992; 36: 823–827. Higuchi T. Biodegration mechanisms of lignin by white-rot basidiomycetes. J Biotechnol 1993; 30: 1–8. Galliano H, Gass G, Boudent A. Biodegradation of Hevea brasiliensis lignocelluloses by Rigidoporus lignosus. Influence of culture conditions and involvement of oxidizing enzymes. Plant Physiol Biochem 1988; 26: 619–627. Sundman V, Nase L. A simple plate test for direct visualization of biological lignin degradation. Paper and Timber 1971; 53: 67–71. Niku-Paavola ML, Raaska L, Itavaara M. Detection of white-rot fungi by nontoxic stain. Mycol Res 1990; 94: 27–31. Bourbonnais R, Paice MG, Freiemuth B, Bodie E, Borneman S. Reactivities of various mediators and laccase with kraft pulp and lignin model compounds. Appl Environ Microbiol 1997; 63: 4627–4632. Pointing SB, Jones EBG, Vrijmoed LLP. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 2000; 92: 139–144. Reddy CA, D'Souza TM. Physiology and molecular biology of the lignin peroxidase of Phanerochaete chrysosporium. FEMS Microbiol Revs 1994; 13: 137–152. Pointing SB. Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 2001; 57: 20–23. Lyr H. Ber den Nachweis von Oxydasen und peroxydasen bei öheren pilzen und die Bedeutung dieser enzyme für die Bavendamm-Reaktion. Planta 1958; 50: 359–370. Buswell JA, Odier E. Lignin biodegradation. Crit Revs Biotechnol 1987; 6: 1–60. Boominathan KR, Reddy CA. Biotechnological applications. In: Akora DK, Elander RP, Mukerji KG, eds. Fungal Degradation of Lignin. Handbook of Applied Mycology, Vol. 4. New York: Dekker, 1992; 763–782. Wariishi H, Valli K, Gold MH. Manganese (II) oxidation by manganese peoxidase from the basidiomycete Phanerochae chrysosporium. J Biologic Chem 1992; 267: 23688–23695. Hatakka A. Lignin-modifying enzymes from selected white-rot fungi, production and role in lignin degradation. FEMS Microbiol Revs 1994; 13: 125–135. Thurston CF. The structure and function of fungal laccase. Microbiol 1994; 140: 19–26. Orth AB, Tien M. Biotechnology of lignin degradation. In: Esser K, Lemke PA, eds. The Mycota. II. Genetics and Bio-Technology, Berlin/Heidelberg/New York: Springer-Verlag, 1995; 287–302. Leonowicz A, Szklarz G, Wojtas-Wasilewska M. The effect of fungal laccase on fractionated lignosulfonates (Peritan Na). Phytochem 1985; 22: 8–16. Buswell JA, Mollet B, Odier E. Ligninolytic enzyme production by Phanerochate chrysosporium under conditions of nutrient sufficiency. FEMS Microbiol Lett 1984; 25: 295–299. Gold M.H. Alic M. Molecular biology of the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Microbiol Revs 1993; 57: 605–622. Mansur M, Suarez T, Fernandez-Larrea JB, Brizuela MA, Gonzalez AE. Identification of a laccase gene family in the new lignin-degrading basidiomycete CECT 20197. Appl Environ Microbiol 1997; 63: 2737–2746. Li, D, Al M, Gold MH. Nitrogen regulation of lignin peoxidase gene transcription. Appl Environ Microbiol 1994; 60: 3447–3449. Ruiz-Duenas FJ, Guillen F, Camarero S, Perez-Boada M, Martinez MJ, Martinez AT. Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol 1999; 65: 4458–4463. Collins PJ, Dobson ADW. Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol 1997; 63: 3444–3450. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G. Copper induction of laccaseiso-enzyme in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 2000; 66: 920–940.