Eikonal equations and pathwise solutions to fully non-linear SPDEs

Springer Science and Business Media LLC - Tập 5 - Trang 256-277 - 2016
Peter K. Friz1,2, Paul Gassiat3, Pierre-Louis Lions4, Panagiotis E. Souganidis5
1Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
2Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin, Germany
3Ceremade Université de Paris-Dauphine, Paris Cedex 16, France
4Collège de France and CEREMADE, Université de Paris-Dauphine, Paris Cedex 5, France
5Department of Mathematics, University of Chicago, chicago, (USA)

Tóm tắt

We study the existence and uniqueness of the stochastic viscosity solutions of fully nonlinear, possibly degenerate, second order stochastic pde with quadratic Hamiltonians associated to a Riemannian geometry. The results are new and extend the class of equations studied so far by the last two authors.

Tài liệu tham khảo

Barles, G.: Solutions de Viscosité des Équations de Hamilton-Jacobi. Springer, Paris (2004) Crandall, M., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992) Diehl, J., Friz, P., Oberhauser, H.: Regularity theory for RPDEs and parabolic comparison revisited. In: Crisan, D. (ed.) Stochastic Analysis and Applications, Springer Proceedings in Mathematics & Statistics, vol. 100 (2014) Lions, P.-L., Souganidis, P.E.: Viscosity solutions of fully nonlinear stochastic partial differential equations. Sūrikaisekikenkyūsho Kōkyūroku (1287), 58–65 (2002). Viscosity solutions of differential equations and related topics (Japanese) (Kyoto, 2001) Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 326(9), 1085–1092 (1998) Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic partial differential equations: non-smooth equations and applications. C. R. Acad. Sci. Paris Sér. I Math. 327(8), 735–741 (1998) Lions, P.-L., Souganidis, P.E.: Fully nonlinear stochastic pde with semilinear stochastic dependence. C. R. Acad. Sci. Paris Sér. I Math. 331(8), 617–624 (2000) Lions, P.-L., Souganidis, P.E.: Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 331(10), 783–790 (2000) Lions, P.-L., Souganidis, P.E.: Stochastic viscosity solutions. Book (in preparation) Lions, P.-L., Souganidis, P.E.: Stochastic viscosity solutions of spatially dependent Hamilton-Jacobi equations with multiple paths (in preparation) Lions, P.-L., Souganidis, P.E.: (in preparation) Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47(1) (2002) Seeger, B.: Perron’s method for stochastic viscosity solutions. Preprint, arXiv:1605.01108