Nanofibers interpenetrating network mimicking “reinforced-concrete” to construct mechanically robust composite membrane for enhanced CO2 separation
Tài liệu tham khảo
Markewitz, 2012, Worldwide innovations in the development of carbon capture technologies and the utilization of CO2, Energy Environ. Sci., 5, 10.1039/c2ee03403d
Cui, 2019, Quantifying operational lifetimes for coal power plants under the Paris goals, Nat. Commun., 10, 4759, 10.1038/s41467-019-12618-3
Xu, 2018, Recent advances on the membrane processes for CO2 separation, Chin. J. Chem. Eng., 26, 2280, 10.1016/j.cjche.2018.08.020
Roussanaly, 2017, Cost-optimal CO2 capture ratio for membrane-based capture from different CO2 sources, Chem. Eng. J., 327, 618, 10.1016/j.cej.2017.06.082
Bernardo, 2009, Membrane gas separation: a review/state of the art, Ind. Eng. Chem. Res., 48, 4638, 10.1021/ie8019032
Wang, 2016, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci., 9, 1863, 10.1039/C6EE00811A
Pera-Titus, 2014, Porous inorganic membranes for CO2 capture: present and prospects, Chem. Rev., 114, 1413, 10.1021/cr400237k
Kalaj, 2020, MOF-polymer hybrid materials: from simple composites to tailored architectures, Chem. Rev., 120, 8267, 10.1021/acs.chemrev.9b00575
Wang, 2021, ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote CO2/N2 separation, J. Membr. Sci., 630, 10.1016/j.memsci.2021.119323
Yang, 2021, Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation, J. Membr. Sci., 624, 10.1016/j.memsci.2020.119046
Yong, 2021, Recent advances in polymer blend membranes for gas separation and pervaporation, Prog. Mater Sci., 116, 10.1016/j.pmatsci.2020.100713
Mozaffari, 2017, Gas separation properties of polyurethane/poly(ether-block-amide) (PU/PEBA) blend membranes, Sep. Purif. Technol., 185, 202, 10.1016/j.seppur.2017.05.028
Deng, 2019, Facile and solvent-free fabrication of PEG-based membranes with interpenetrating networks for CO2 separation, J. Membr. Sci., 570–571, 455, 10.1016/j.memsci.2018.10.031
Janakiram, 2019, Manipulation of fibril surfaces in nanocellulose-based facilitated transport membranes for enhanced CO2 capture, ACS Appl. Mater. Interfaces, 11, 33302, 10.1021/acsami.9b09920
Janakiram, 2021, Field trial of hollow fiber modules of hybrid facilitated transport membranes for flue gas CO2 capture in cement industry, Chem. Eng. J., 413, 10.1016/j.cej.2020.127405
Janakiram, 2020, Facilitated transport membranes containing graphene oxide-based nanoplatelets for CO2 separation: effect of 2D filler properties, J. Membr. Sci., 616, 10.1016/j.memsci.2020.118626
Dai, 2016, Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review, Green Energy Environ, 1, 102, 10.1016/j.gee.2016.08.001
Huang, 2020, Fabrication of electrospun CO2 adsorption membrane for zinc-air battery application, Chem. Eng. J., 395, 10.1016/j.cej.2020.125031
Zhang, 2018, Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability, ACS Appl. Mater. Interfaces, 10, 34802, 10.1021/acsami.8b14197
Bian, 2018, Metal–organic framework-based nanofiber filters for effective indoor air quality control, J. Mater. Chem. A, 6, 15807, 10.1039/C8TA04539A
Zhang, 2016, Preparation of nanofibrous metal-organic framework filters for efficient air pollution control, J. Am. Chem. Soc., 138, 5785, 10.1021/jacs.6b02553
Zhao, 2019, An electrospun fiber based metal–organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water, J. Mater. Chem. A, 7, 22559, 10.1039/C9TA04664J
Olivieri, 2018, Evaluation of electrospun nanofibrous mats as materials for CO2 capture: a feasibility study on functionalized poly(acrylonitrile) (PAN), J. Membr. Sci., 546, 128, 10.1016/j.memsci.2017.10.019
Huvard, 1980, The pressure dependence of CO2 sorption and permeation in poly(acrylonitrile), J. Membr. Sci., 6, 185, 10.1016/S0376-7388(00)82162-6
Sood, 2016, Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes, Nano Energy, 26, 729, 10.1016/j.nanoen.2016.06.027
Mollá, 2011, Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications, J. Membr. Sci., 372, 191, 10.1016/j.memsci.2011.02.001
He, 2015, Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix, J. Mater. Chem. A, 3, 21832, 10.1039/C5TA03601A
Li, 2014, Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells, J. Mater. Chem. A, 2, 3783, 10.1039/C3TA14264G
Gong, 2015, Electrospun nanofiber enhanced imidazolium-functionalized polysulfone composite anion exchange membranes, RSC Adv, 5, 95118, 10.1039/C5RA16232G
Lin, 2005, The effect of cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate), Macromolecules, 38, 8381, 10.1021/ma0510136
Lin, 2006, Gas permeation and diffusion in cross-linked poly(ethylene glycol diacrylate), Macromolecules, 39, 3568, 10.1021/ma051686o
Lau, 2013, Reverse-selective polymeric membranes for gas separations, Prog. Polym. Sci., 38, 740, 10.1016/j.progpolymsci.2012.09.006
Deng, 2020, Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water, Chem. Eng. J., 392, 10.1016/j.cej.2019.123815
Jiang, 2017, Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations, Energy Environ. Sci., 10, 1339, 10.1039/C6EE03566C
Zhang, 2020, Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries, ACS Appl. Mater. Interfaces, 12, 23774, 10.1021/acsami.9b22945
Huang, 2020, Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability, J. Membr. Sci., 610, 10.1016/j.memsci.2020.118253
Al-Attabi, 2018, High efficiency poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration, Adv. Eng. Mater., 20, 10.1002/adem.201700572
Albehaijan, 2020, Mechanoelectrical transduction of polymer electrolyte membranes: effect of branched networks, ACS Appl. Mater. Interfaces, 12, 7518, 10.1021/acsami.9b15599
Hu, 2018, Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly(ethylene oxide) for CO2 capture, Sep. Purif. Technol., 205, 58, 10.1016/j.seppur.2018.05.012
Lin, 2006, Plasticization-enhanced hydrogen purification using polymeric membranes, Science, 311, 639, 10.1126/science.1118079
Jiang, 2018, Interface manipulation of CO2–philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture, J. Mater. Chem. A, 6, 15064, 10.1039/C8TA03872D
Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030
Norouzbahari, 2020, UV cross-linked poly(ethylene glycol)-based membranes with different fractional free volumes for CO2 capture: synthesis, characterization, and thiol-ene modification evaluation, Ind. Eng. Chem. Res., 59, 6078, 10.1021/acs.iecr.9b06193
Kammakakam, 2020, Tailored CO2-philic anionic poly(ionic liquid) composite membranes: synthesis, characterization, and gas transport properties, ACS Sustainable Chem. Eng., 8, 5954, 10.1021/acssuschemeng.0c00327
Zhao, 2015, A novel multi-armed and star-like poly(ethylene oxide) membrane for CO2 separation, J. Membr. Sci., 489, 258, 10.1016/j.memsci.2015.04.028
Jiang, 2019, Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO2-philic membranes for superior carbon capture, J. Mater. Chem. A, 7, 16704, 10.1039/C9TA03416A
Yoon, 2018, Highly permeable and selective CO2 separation membrane to utilize 5-hydroxyisophthalic acid in poly(ethylene oxide) matrix, Chem. Eng. J., 334, 1749, 10.1016/j.cej.2017.11.113
Kim, 2019, Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for CO2 capture, Chem. Eng. J., 360, 1468, 10.1016/j.cej.2018.10.152
Lee, 2018, Dual-phase all-polymeric membranes with graft copolymer filler for CO2 capture, Chem. Eng. J., 334, 939, 10.1016/j.cej.2017.10.109