Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation

Springer Science and Business Media LLC - Tập 17 - Trang 1-7 - 2017
Pablo Cruces1,2, Sebastián González-Dambrauskas3, Julio Quilodrán1, Jorge Valenzuela1, Javier Martínez3, Natalia Rivero1, Pablo Arias1, Franco Díaz4,5
1Pediatric Intensive Care Unit, Hospital El Carmen de Maipú, Santiago, Chile
2Centro de Investigación de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
3Pediatric Intensive Care Unit, Centro Hospitalario Pereira Rossell, Montevideo, Uruguay
4Pediatric Intensive Care Unit, Clínica Alemana de Santiago, Santiago, Chile
5Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile

Tóm tắt

Analysis of respiratory mechanics during mechanical ventilation (MV) is able to estimate resistive, elastic and inertial components of the working pressure of the respiratory system. Our aim was to discriminate the components of the working pressure of the respiratory system in infants on MV with severe bronchiolitis admitted to two PICU’s. Infants younger than 1 year old with acute respiratory failure caused by severe bronchiolitis underwent neuromuscular blockade, tracheal intubation and volume controlled MV. Shortly after intubation studies of pulmonary mechanics were performed using inspiratory and expiratory breath hold. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory (PIP), plateau (PPL) and total expiratory pressures (tPEEP) were measured. Inspiratory and expiratory resistances (RawI and RawE) and Time Constants (KTI and KTE) were calculated. We included 16 patients, of median age 2.5 (1–5.8) months. Bronchiolitis due to respiratory syncytial virus was the main etiology (93.8%) and 31.3% had comorbidities. Measured respiratory pressures were PIP 29 (26–31), PPL 24 (20–26), tPEEP 9 [8–11] cmH2O. Elastic component of the working pressure was significantly higher than resistive and both higher than threshold (tPEEP – PEEP) (P < 0.01). QI was significantly lower than QE [5 (4.27–6.75) v/s 16.5 (12–23.8) L/min. RawI and RawE were 38.8 (32–53) and 40.5 (22–55) cmH2O/L/s; KTI and KTE [0.18 (0.12–0.30) v/s 0.18 (0.13–0.22) s], and KTI:KTE ratio was 1:1.04 (1:0.59–1.42). Analysis of respiratory mechanics of infants with severe bronchiolitis receiving MV shows that the elastic component of the working pressure of the respiratory system is the most important. The elastic and resistive components in conjunction with flow profile are characteristic of restrictive diseases. A better understanding of lung mechanics in this group of patients may lead to change the traditional ventilatory approach to severe bronchiolitis.

Tài liệu tham khảo

Fernandes RM, Andrade MG, Constant C, Malveiro D, Magalhães M, Abreu D, Azevedo I, Sousa E, Salgado R, Bandeira T. Acute viral bronchiolitis: physician perspectives on definition and clinically important outcomes. Pediatr Pulmonol. 2016;51:724–32. Meissner HC. Viral bronchiolitis in children. N Engl J Med. 2016;374:62–72. Bertrand P. Bronquiolitis aguda. In: Sánchez I, editor. Enfoque clínico de las Enfermedades Respiratorias del niño. Santiago: Universidad Católica de Chile; 2007. p. 175–8. Ralston SL, Lieberthal AS, Meissner HC, Alverson BK, Baley JE, Gadomski AM, Johnson DW, Light MJ, Maraqa NF, Mendonca EA, Phelan KJ, Zorc JJ, Stanko-Lopp D, Brown MA, Nathanson I, Rosenblum E, Sayles S 3rd, Hernandez-Cancio S. Clinical practice guideline: the diagnosis, management, and prevention of bronchiolitis. Pediatrics 2014; 134:e1474-e1502. Øymar K, Skjerven HO, Mikalsen IB. Acute bronchiolitis in infants, a review. Scand J Trauma Resusc Emerg Med. 2014;22:23. Hasegawa K, Tsugawa Y, Brown DF, Mansbach JM, Camargo CA Jr. Trends in bronchiolitis hospitalizations in the United States, 2000-2009. Pediatrics. 2013;132:28–36. Leclerc F, Scalfaro P, Noizet O, Thumerelle C, Dorkenoo A, Fourier C. Mechanical ventilatory support in infants with respiratory syncytial virus infection. Pediatr Crit Care Med. 2001;2:197–204. Rakshi K, Couriel JM. Management of acute bronchiolitis. Arch Dis Child. 1994;71:463–9. Greenough A. Role of ventilation in RSV disease: CPAP, ventilation, HFO, ECMO. Paediatr Respir Rev. 2009;10:26–8. Hess DR. Respiratory mechanics in mechanically ventilated patients. Respir Care. 2014;59:1773–94. Brochard L, Martin GS, Blanch L, Pelosi P, Belda FJ, Jubran A, Gattinoni L, Mancebo J, Ranieri VM, Richard JC, Gommers D, Vieillard-Baron A, Pesenti A, Jaber S, Stenqvist O, Vincent JL. Clinical review: respiratory monitoring in the ICU - a consensus of 16. Crit Care. 2012;16:219. Cabello B, Mancebo J. Work of breathing. In: Hedenstierna G, Mancebo J, Brochard L, Pinsky M, (eds). Applied physiology in intensive care medicine. Berlin: Springer; 2009. Krieger I. Mechanics of respiration in bronchiolitis. Pediatrics. 1964;33:45–54. Smith DW, Rector DM, Derish MT, Frankel LR, Ariagno RL. Pulmonary function testing in infants with respiratory syncytial virus bronchiolitis requiring mechanical ventilation. Pediatr Infect Dis J. 1990;9:S108–11. Smith PG, el-Khatib MF, Carlo WA. PEEP does not improve pulmonary mechanics in infants with bronchiolitis. Am Rev Respir Dis. 1993;147:1295–8. Tepper RS, Pagtakhan RD, Taussig LM. Noninvasive determination of total respiratory system compliance in infants by the weighted-spirometer method. Am Rev Respir Dis. 1984;130:461–6. Frankel LR, Lewiston NJ, Smith DW, Stevenson DK. Clinical observations on mechanical ventilation for respiratory failure in bronchiolitis. Pediatr Pulmonol. 1986;2:307–11. Gerhardt T, Reifenberg L, Duara S, Bancalari E. Comparison of dynamic and static measurements of respiratory mechanics in infants. J Pediatr. 1989;114:120–5. De la Cruz RH, Banner MJ, Weldon BC. Intratracheal pressure: a more accurate reflection of pulmonary airway pressure in pediatric patients with respiratory failure. Pediatr Crit Care Med. 2005;6:175–81. Pesenti A, Pelosi P, Rossi N, Virtuani A, Brazzi L, Rossi A. The effects of positive end-expiratory pressure on respiratory resistance in patients with the adult respiratory distress syndrome and in normal anesthetized subjects. Am Rev Respir Dis. 1991;144:101–7. Hammer J, Numa A, Newth CJ. Acute respiratory distress syndrome caused by respiratory syncytial virus. Pediatr Pulmonol. 1997;3:176–83. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R, and the Consensus Committee. The American-European consensus conference on ARDS. Definition, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149:818–24. Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:428–39. Milési C, Essouri S, Pouyau R, Liet JM, Afanetti M, Portefaix A, Baleine J, Durand S, Combes C, Douillard A, Cambonie G, Groupe Francophone de Réanimation et d’Urgences Pédiatriques (GFRUP). High flow nasal cannula (HFNC) versus nasal continuous positive airway pressure (nCPAP) for the initial respiratory management of acute viral bronchiolitis in young infants: a multicenter randomized controlled trial (TRAMONTANE study). Intensive Care Med. 2017;43:209–16. Larouche A, Massicotte E, Constantin G, Ducharme-Crevier L, Essouri S, Sinderby C, Beck J, Emeriaud G. Tonic diaphragmatic activity in critically ill children with and without ventilatory support. Pediatr Pulmonol. 2015;50:1304–12.