A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation

Trends in Microbiology - Tập 27 - Trang 75-85 - 2019
Antonio Gregorio Dias Junior1, Natalia G. Sampaio1, Jan Rehwinkel1
1Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK

Tài liệu tham khảo

Medzhitov, 2009, Approaching the asymptote: 20 years later, Immunity, 30, 766, 10.1016/j.immuni.2009.06.004 Barrat, 2016, Importance of nucleic acid recognition in inflammation and autoimmunity, Annu. Rev. Med., 67, 323, 10.1146/annurev-med-052814-023338 Hartmann, 2017, Nucleic acid immunity, Adv. Immunol., 133, 121, 10.1016/bs.ai.2016.11.001 Goubau, 2013, Cytosolic sensing of viruses, Immunity, 38, 855, 10.1016/j.immuni.2013.05.007 Yan, 2012, Intrinsic antiviral immunity, Nat. Immunol., 13, 214, 10.1038/ni.2229 McNab, 2015, Type I interferons in infectious disease, Nat. Rev. Immunol., 15, 87, 10.1038/nri3787 Orzalli, 2017, Apoptosis and necroptosis as host defense strategies to prevent viral infection, Trends Cell Biol., 27, 800, 10.1016/j.tcb.2017.05.007 Goubau, 2014, Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates, Nature, 514, 372, 10.1038/nature13590 Rehwinkel, 2010, RIG-I detects viral genomic RNA during negative-strand RNA virus infection, Cell, 140, 397, 10.1016/j.cell.2010.01.020 Pichlmair, 2006, RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates, Science, 314, 997, 10.1126/science.1132998 Hornung, 2006, 5′-Triphosphate RNA is the ligand for RIG-I, Science, 314, 994, 10.1126/science.1132505 Baum, 2010, Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing, Proc. Natl. Acad. Sci. U. S. A., 107, 16303, 10.1073/pnas.1005077107 Schmidt, 2009, 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I, Proc. Natl. Acad. Sci. U. S. A., 106, 12067, 10.1073/pnas.0900971106 Schuberth-Wagner, 2015, A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2′O-methylated self RNA, Immunity, 43, 41, 10.1016/j.immuni.2015.06.015 Schlee, 2009, Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus, Immunity, 31, 25, 10.1016/j.immuni.2009.05.008 Chiang, 2018, Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity, Nat. Immunol., 19, 53, 10.1038/s41590-017-0005-y Dhir, 2018, Mitochondrial double-stranded RNA triggers antiviral signalling in humans, Nature, 560, 238, 10.1038/s41586-018-0363-0 Kato, 2006, Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, 441, 101, 10.1038/nature04734 Peisley, 2011, Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition, Proc. Natl. Acad. Sci. U. S. A., 108, 21010, 10.1073/pnas.1113651108 Peisley, 2012, Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments, Proc. Natl. Acad. Sci. U. S. A., 109, E3340, 10.1073/pnas.1208618109 Wu, 2013, Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5, Cell, 152, 276, 10.1016/j.cell.2012.11.048 Crow, 2015, Aicardi–Goutieres syndrome and the type I interferonopathies, Nat. Rev. Immunol., 15, 429, 10.1038/nri3850 Roulois, 2015, DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts, Cell, 162, 961, 10.1016/j.cell.2015.07.056 Chiappinelli, 2015, Inhibiting DNA. methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses, Cell, 162, 974, 10.1016/j.cell.2015.07.011 Ahmad, 2018, Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation, Cell, 172, 797, 10.1016/j.cell.2017.12.016 Zhao, 2018, LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways, J. Autoimmun., 90, 105, 10.1016/j.jaut.2018.02.007 Kovacsovics, 2002, Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation, Curr. Biol., 12, 838, 10.1016/S0960-9822(02)00842-4 Kang, 2002, mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties, Proc. Natl. Acad. Sci. U. S. A., 99, 637, 10.1073/pnas.022637199 Andrejeva, 2004, The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter, Proc. Natl. Acad. Sci. U. S. A., 101, 17264, 10.1073/pnas.0407639101 Gitlin, 2006, Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus, Proc. Natl. Acad. Sci. U. S. A., 103, 8459, 10.1073/pnas.0603082103 Berke, 2012, MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA, EMBO J., 31, 1714, 10.1038/emboj.2012.19 Kato, 2008, Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5, J. Exp. Med., 205, 1601, 10.1084/jem.20080091 Colby, 1969, The specificity of interferon induction in chick embryo cells by helical RNA, Proc. Natl. Acad. Sci. U. S. A., 63, 160, 10.1073/pnas.63.1.160 Pichlmair, 2009, Activation of MDA5 requires higher-order RNA structures generated during virus infection, J. Virol., 83, 10761, 10.1128/JVI.00770-09 Grunberg-Manago, 1989, Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. 1956, Biochim. Biophys. Acta, 1000, 65 Zaki, 2017, Recurrent and prolonged infections in a child with a homozygous IFIH1 nonsense mutation, Front. Genet., 8, 130, 10.3389/fgene.2017.00130 Lamborn, 2017, Recurrent rhinovirus infections in a child with inherited MDA5 deficiency, J. Exp. Med., 214, 1949, 10.1084/jem.20161759 Asgari, 2017, Severe viral respiratory infections in children with IFIH1 loss-of-function mutations, Proc. Natl. Acad. Sci. U. S. A., 114, 8342, 10.1073/pnas.1704259114 Schonborn, 1991, Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts, Nucleic Acids Res., 19, 2993, 10.1093/nar/19.11.2993 Weber, 2006, Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses, J. Virol., 80, 5059, 10.1128/JVI.80.10.5059-5064.2006 Triantafilou, 2012, Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses, J. Cell Sci., 125, 4761, 10.1242/jcs.103887 Nguyen, 2017, SIDT2 Transports extracellular dsRNA into the cytoplasm for innate immune recognition, Immunity, 47, 498, 10.1016/j.immuni.2017.08.007 Feng, 2012, MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells, Cell Rep., 2, 1187, 10.1016/j.celrep.2012.10.005 Hertzog, 2018, Infection with a Brazilian isolate of Zika virus generates RIG-I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signaling, Eur. J. Immunol., 48, 1120, 10.1002/eji.201847483 Sanchez David, 2016, Comparative analysis of viral RNA signatures on different RIG-I-like receptors, eLife, 5, 10.7554/eLife.11275 Runge, 2014, In vivo ligands of MDA5 and RIG-I in measles virus-infected cells, PLoS Pathog., 10, 10.1371/journal.ppat.1004081 Deddouche, 2014, Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells, eLife, 3, 10.7554/eLife.01535 Jiang, 2018, Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response, Cell, 173, 10.1016/j.cell.2018.03.064 Lee, 2018, Advances in CLIP technologies for studies of protein–RNA interactions, Mol. Cell, 69, 354, 10.1016/j.molcel.2018.01.005 van der Veen, 2018, The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells, EMBO J., 37, 10.15252/embj.201797479 Rodriguez, 2014, MDA5 and LGP2: accomplices and antagonists of antiviral signal transduction, J. Virol., 88, 8194, 10.1128/JVI.00640-14 Uchikawa, 2016, Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5, Mol. Cell, 62, 586, 10.1016/j.molcel.2016.04.021 Bruns, 2014, The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5–RNA interaction and filament assembly, Mol. Cell, 55, 771, 10.1016/j.molcel.2014.07.003 Yao, 2015, ATP-dependent effector-like functions of RIG-I-like receptors, Mol. Cell, 58, 541, 10.1016/j.molcel.2015.03.014 Zhu, 2018, DHX29 functions as an RNA co-sensor for MDA5-mediated EMCV-specific antiviral immunity, PLoS Pathog., 14, 10.1371/journal.ppat.1006886 Xie, 2018, LncITPRIP-1 positively regulates innate immune response through promoting oligomerization and activation of MDA5, J. Virol., 10.1128/JVI.00507-18 Zust, 2011, Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5, Nat. Immunol., 12, 137, 10.1038/ni.1979 Kindler, 2017, Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication, PLoS Pathog., 13, 10.1371/journal.ppat.1006195 Odendall, 2014, Diverse intracellular pathogens activate type III interferon expression from peroxisomes, Nat. Immunol., 15, 717, 10.1038/ni.2915 Dixit, 2010, Peroxisomes are signaling platforms for antiviral innate immunity, Cell, 141, 668, 10.1016/j.cell.2010.04.018 Bender, 2015, Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus, PLoS Pathog., 11, 10.1371/journal.ppat.1005264 Smyth, 2006, A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region, Nat. Genet., 38, 617, 10.1038/ng1800 Sheng, 2014, Sequencing-based approach identified three new susceptibility loci for psoriasis, Nat. Commun., 5, 4331, 10.1038/ncomms5331 Martinez, 2008, Association of the IFIH1-GCA-KCNH7 chromosomal region with rheumatoid arthritis, Ann. Rheum. Dis., 67, 137, 10.1136/ard.2007.073213 Jin, 2012, Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo, Nat. Genet., 44, 676, 10.1038/ng.2272 Enevold, 2009, Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1, J. Neuroimmunol., 212, 125, 10.1016/j.jneuroim.2009.04.008 Cunninghame Graham, 2011, Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus, PLoS Genet., 7, 10.1371/journal.pgen.1002341 Nejentsev, 2009, Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes, Science, 324, 387, 10.1126/science.1167728 Lincez, 2015, Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes, Diabetes, 64, 2184, 10.2337/db14-1223 Gorman, 2017, The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity, Nat. Immunol., 18, 744, 10.1038/ni.3766 Downes, 2010, Reduced expression of IFIH1 is protective for type 1 diabetes, PLoS One, 5, 10.1371/journal.pone.0012646 Funabiki, 2014, Autoimmune disorders associated with gain of function of the intracellular sensor MDA5, Immunity, 40, 199, 10.1016/j.immuni.2013.12.014 Rutsch, 2015, A specific IFIH1 gain-of-function mutation causes Singleton–Merten syndrome, Am. J. Hum. Genet., 96, 275, 10.1016/j.ajhg.2014.12.014 Rice, 2014, Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling, Nat. Genet., 46, 503, 10.1038/ng.2933 Oda, 2014, Aicardi–Goutières syndrome is caused by IFIH1 mutations, Am. J. Hum. Genet., 95, 121, 10.1016/j.ajhg.2014.06.007 Crow, 2009, Aicardi–Goutières syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity, Hum. Mol. Genet., 18, R130, 10.1093/hmg/ddp293 Rice, 2013, Assessment of interferon-related biomarkers in Aicardi–Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study, Lancet Neurol., 12, 1159, 10.1016/S1474-4422(13)70258-8 Volkman, 2014, The enemy within: endogenous retroelements and autoimmune disease, Nat. Immunol., 15, 415, 10.1038/ni.2872 Maelfait, 2016, Restriction by SAMHD1 limits cGAS/STING-dependent innate and adaptive immune responses to HIV-1, Cell Rep., 16, 1492, 10.1016/j.celrep.2016.07.002 Mackenzie, 2016, Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response, EMBO J., 35, 831, 10.15252/embj.201593339 Ablasser, 2014, TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner, J. Immunol., 192, 5993, 10.4049/jimmunol.1400737 Gray, 2015, Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi–Goutières syndrome, J. Immunol., 195, 1939, 10.4049/jimmunol.1500969 Gao, 2015, Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases, Proc. Natl. Acad. Sci. U. S. A., 112, E5699, 10.1073/pnas.1516465112 Gall, 2012, Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease, Immunity, 36, 120, 10.1016/j.immuni.2011.11.018 Chung, 2018, Human ADAR1 prevents endogenous RNA from triggering translational shutdown, Cell, 172, 10.1016/j.cell.2017.12.038 Liddicoat, 2015, RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself, Science, 349, 1115, 10.1126/science.aac7049 Pestal, 2015, Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development, Immunity, 43, 933, 10.1016/j.immuni.2015.11.001 Eisenberg, 2018, A-to-I RNA editing – immune protector and transcriptome diversifier, Nat. Rev. Genet., 19, 473, 10.1038/s41576-018-0006-1 Rice, 2012, Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature, Nat. Genet., 44, 1243, 10.1038/ng.2414 Mannion, 2014, The RNA-editing enzyme ADAR1 controls innate immune responses to RNA, Cell Rep., 9, 1482, 10.1016/j.celrep.2014.10.041 Hartner, 2009, ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling, Nat. Immunol., 10, 109, 10.1038/ni.1680 Heraud-Farlow, 2017, Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis, Genome Biol., 18, 166, 10.1186/s13059-017-1301-4 Tan, 2017, Dynamic landscape and regulation of RNA editing in mammals, Nature, 550, 249, 10.1038/nature24041 Ramaswami, 2014, RADAR: a rigorously annotated database of A-to-I RNA editing, Nucleic Acids Res., 42, D109, 10.1093/nar/gkt996 Bahn, 2015, Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways, Nat. Commun., 6, 6355, 10.1038/ncomms7355 Solomon, 2017, RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure, Nat. Commun., 8, 1440, 10.1038/s41467-017-01458-8 Vitali, 2010, Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis, Nat. Struct. Mol. Biol., 17, 1043, 10.1038/nsmb.1864 Aktas, 2017, DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome, Nature, 544, 115, 10.1038/nature21715 Cuellar, 2017, Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia, J. Cell Biol., 216, 3535, 10.1083/jcb.201612160 Yu, 2016, Activation of the MDA-5-IPS-1 viral sensing pathway induces cancer cell death and type I IFN-dependent antitumor immunity, Cancer Res., 76, 2166, 10.1158/0008-5472.CAN-15-2142 Wu, 2017, The anticancer functions of RIG-I-like receptors, RIG-I and MDA5, and their applications in cancer therapy, Transl. Res., 190, 51, 10.1016/j.trsl.2017.08.004 Wang, 2010, MDA5 and MAVS mediate type I interferon responses to coxsackie B virus, J. Virol., 84, 254, 10.1128/JVI.00631-09 Slater, 2010, Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium, PLoS Pathog., 6, 10.1371/journal.ppat.1001178 Cao, 2015, MDA5 plays a critical role in interferon response during hepatitis C virus infection, J. Hepatol., 62, 771, 10.1016/j.jhep.2014.11.007 Fredericksen, 2008, Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1, J. Virol., 82, 609, 10.1128/JVI.01305-07 Burke, 2009, Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses, Virology, 395, 121, 10.1016/j.virol.2009.08.039 Akhrymuk, 2016, Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode, Virology, 487, 230, 10.1016/j.virol.2015.09.023 Zalinger, 2015, MDA5 is critical to host defense during infection with murine coronavirus, J. Virol., 89, 12330, 10.1128/JVI.01470-15 Li, 2010, Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5, J. Virol., 84, 6472, 10.1128/JVI.00016-10 Ikegame, 2010, Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells, J. Virol., 84, 372, 10.1128/JVI.01690-09 Gitlin, 2010, Melanoma differentiation-associated gene 5 (MDA5) is involved in the innate immune response to Paramyxoviridae infection in vivo, PLoS Pathog., 6, 10.1371/journal.ppat.1000734 Banos-Lara Mdel, 2013, Critical role of MDA5 in the interferon response induced by human metapneumovirus infection in dendritic cells and in vivo, J. Virol., 87, 1242, 10.1128/JVI.01213-12 Dou, 2017, The innate immune receptor MDA5 limits rotavirus infection but promotes cell death and pancreatic inflammation, EMBO J., 36, 10.15252/embj.201696273 Pham, 2016, PKR transduces MDA5-dependent signals for type I IFN induction, PLoS Pathog., 12, 10.1371/journal.ppat.1005489 Melchjorsen, 2010, Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways, J. Virol., 84, 11350, 10.1128/JVI.01106-10 Lu, 2013, Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication, J. Immunol., 191, 3264, 10.4049/jimmunol.1300512 Zhang, 2018, Hepatitis D virus replication is sensed by MDA5 and induces IFN-beta/lambda responses in hepatocytes, J. Hepatol., 69, 25, 10.1016/j.jhep.2018.02.021 Chen, 2017, ALUternative regulation for gene expression, Trends Cell Biol., 27, 480, 10.1016/j.tcb.2017.01.002