A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation
Tài liệu tham khảo
Medzhitov, 2009, Approaching the asymptote: 20 years later, Immunity, 30, 766, 10.1016/j.immuni.2009.06.004
Barrat, 2016, Importance of nucleic acid recognition in inflammation and autoimmunity, Annu. Rev. Med., 67, 323, 10.1146/annurev-med-052814-023338
Hartmann, 2017, Nucleic acid immunity, Adv. Immunol., 133, 121, 10.1016/bs.ai.2016.11.001
Goubau, 2013, Cytosolic sensing of viruses, Immunity, 38, 855, 10.1016/j.immuni.2013.05.007
Yan, 2012, Intrinsic antiviral immunity, Nat. Immunol., 13, 214, 10.1038/ni.2229
McNab, 2015, Type I interferons in infectious disease, Nat. Rev. Immunol., 15, 87, 10.1038/nri3787
Orzalli, 2017, Apoptosis and necroptosis as host defense strategies to prevent viral infection, Trends Cell Biol., 27, 800, 10.1016/j.tcb.2017.05.007
Goubau, 2014, Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates, Nature, 514, 372, 10.1038/nature13590
Rehwinkel, 2010, RIG-I detects viral genomic RNA during negative-strand RNA virus infection, Cell, 140, 397, 10.1016/j.cell.2010.01.020
Pichlmair, 2006, RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates, Science, 314, 997, 10.1126/science.1132998
Hornung, 2006, 5′-Triphosphate RNA is the ligand for RIG-I, Science, 314, 994, 10.1126/science.1132505
Baum, 2010, Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing, Proc. Natl. Acad. Sci. U. S. A., 107, 16303, 10.1073/pnas.1005077107
Schmidt, 2009, 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I, Proc. Natl. Acad. Sci. U. S. A., 106, 12067, 10.1073/pnas.0900971106
Schuberth-Wagner, 2015, A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2′O-methylated self RNA, Immunity, 43, 41, 10.1016/j.immuni.2015.06.015
Schlee, 2009, Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus, Immunity, 31, 25, 10.1016/j.immuni.2009.05.008
Chiang, 2018, Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity, Nat. Immunol., 19, 53, 10.1038/s41590-017-0005-y
Dhir, 2018, Mitochondrial double-stranded RNA triggers antiviral signalling in humans, Nature, 560, 238, 10.1038/s41586-018-0363-0
Kato, 2006, Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses, Nature, 441, 101, 10.1038/nature04734
Peisley, 2011, Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition, Proc. Natl. Acad. Sci. U. S. A., 108, 21010, 10.1073/pnas.1113651108
Peisley, 2012, Kinetic mechanism for viral dsRNA length discrimination by MDA5 filaments, Proc. Natl. Acad. Sci. U. S. A., 109, E3340, 10.1073/pnas.1208618109
Wu, 2013, Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5, Cell, 152, 276, 10.1016/j.cell.2012.11.048
Crow, 2015, Aicardi–Goutieres syndrome and the type I interferonopathies, Nat. Rev. Immunol., 15, 429, 10.1038/nri3850
Roulois, 2015, DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts, Cell, 162, 961, 10.1016/j.cell.2015.07.056
Chiappinelli, 2015, Inhibiting DNA. methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses, Cell, 162, 974, 10.1016/j.cell.2015.07.011
Ahmad, 2018, Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation, Cell, 172, 797, 10.1016/j.cell.2017.12.016
Zhao, 2018, LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways, J. Autoimmun., 90, 105, 10.1016/j.jaut.2018.02.007
Kovacsovics, 2002, Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation, Curr. Biol., 12, 838, 10.1016/S0960-9822(02)00842-4
Kang, 2002, mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties, Proc. Natl. Acad. Sci. U. S. A., 99, 637, 10.1073/pnas.022637199
Andrejeva, 2004, The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter, Proc. Natl. Acad. Sci. U. S. A., 101, 17264, 10.1073/pnas.0407639101
Gitlin, 2006, Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus, Proc. Natl. Acad. Sci. U. S. A., 103, 8459, 10.1073/pnas.0603082103
Berke, 2012, MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA, EMBO J., 31, 1714, 10.1038/emboj.2012.19
Kato, 2008, Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5, J. Exp. Med., 205, 1601, 10.1084/jem.20080091
Colby, 1969, The specificity of interferon induction in chick embryo cells by helical RNA, Proc. Natl. Acad. Sci. U. S. A., 63, 160, 10.1073/pnas.63.1.160
Pichlmair, 2009, Activation of MDA5 requires higher-order RNA structures generated during virus infection, J. Virol., 83, 10761, 10.1128/JVI.00770-09
Grunberg-Manago, 1989, Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. 1956, Biochim. Biophys. Acta, 1000, 65
Zaki, 2017, Recurrent and prolonged infections in a child with a homozygous IFIH1 nonsense mutation, Front. Genet., 8, 130, 10.3389/fgene.2017.00130
Lamborn, 2017, Recurrent rhinovirus infections in a child with inherited MDA5 deficiency, J. Exp. Med., 214, 1949, 10.1084/jem.20161759
Asgari, 2017, Severe viral respiratory infections in children with IFIH1 loss-of-function mutations, Proc. Natl. Acad. Sci. U. S. A., 114, 8342, 10.1073/pnas.1704259114
Schonborn, 1991, Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts, Nucleic Acids Res., 19, 2993, 10.1093/nar/19.11.2993
Weber, 2006, Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses, J. Virol., 80, 5059, 10.1128/JVI.80.10.5059-5064.2006
Triantafilou, 2012, Visualisation of direct interaction of MDA5 and the dsRNA replicative intermediate form of positive strand RNA viruses, J. Cell Sci., 125, 4761, 10.1242/jcs.103887
Nguyen, 2017, SIDT2 Transports extracellular dsRNA into the cytoplasm for innate immune recognition, Immunity, 47, 498, 10.1016/j.immuni.2017.08.007
Feng, 2012, MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells, Cell Rep., 2, 1187, 10.1016/j.celrep.2012.10.005
Hertzog, 2018, Infection with a Brazilian isolate of Zika virus generates RIG-I stimulatory RNA and the viral NS5 protein blocks type I IFN induction and signaling, Eur. J. Immunol., 48, 1120, 10.1002/eji.201847483
Sanchez David, 2016, Comparative analysis of viral RNA signatures on different RIG-I-like receptors, eLife, 5, 10.7554/eLife.11275
Runge, 2014, In vivo ligands of MDA5 and RIG-I in measles virus-infected cells, PLoS Pathog., 10, 10.1371/journal.ppat.1004081
Deddouche, 2014, Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells, eLife, 3, 10.7554/eLife.01535
Jiang, 2018, Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response, Cell, 173, 10.1016/j.cell.2018.03.064
Lee, 2018, Advances in CLIP technologies for studies of protein–RNA interactions, Mol. Cell, 69, 354, 10.1016/j.molcel.2018.01.005
van der Veen, 2018, The RIG-I-like receptor LGP2 inhibits Dicer-dependent processing of long double-stranded RNA and blocks RNA interference in mammalian cells, EMBO J., 37, 10.15252/embj.201797479
Rodriguez, 2014, MDA5 and LGP2: accomplices and antagonists of antiviral signal transduction, J. Virol., 88, 8194, 10.1128/JVI.00640-14
Uchikawa, 2016, Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5, Mol. Cell, 62, 586, 10.1016/j.molcel.2016.04.021
Bruns, 2014, The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5–RNA interaction and filament assembly, Mol. Cell, 55, 771, 10.1016/j.molcel.2014.07.003
Yao, 2015, ATP-dependent effector-like functions of RIG-I-like receptors, Mol. Cell, 58, 541, 10.1016/j.molcel.2015.03.014
Zhu, 2018, DHX29 functions as an RNA co-sensor for MDA5-mediated EMCV-specific antiviral immunity, PLoS Pathog., 14, 10.1371/journal.ppat.1006886
Xie, 2018, LncITPRIP-1 positively regulates innate immune response through promoting oligomerization and activation of MDA5, J. Virol., 10.1128/JVI.00507-18
Zust, 2011, Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5, Nat. Immunol., 12, 137, 10.1038/ni.1979
Kindler, 2017, Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication, PLoS Pathog., 13, 10.1371/journal.ppat.1006195
Odendall, 2014, Diverse intracellular pathogens activate type III interferon expression from peroxisomes, Nat. Immunol., 15, 717, 10.1038/ni.2915
Dixit, 2010, Peroxisomes are signaling platforms for antiviral innate immunity, Cell, 141, 668, 10.1016/j.cell.2010.04.018
Bender, 2015, Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus, PLoS Pathog., 11, 10.1371/journal.ppat.1005264
Smyth, 2006, A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region, Nat. Genet., 38, 617, 10.1038/ng1800
Sheng, 2014, Sequencing-based approach identified three new susceptibility loci for psoriasis, Nat. Commun., 5, 4331, 10.1038/ncomms5331
Martinez, 2008, Association of the IFIH1-GCA-KCNH7 chromosomal region with rheumatoid arthritis, Ann. Rheum. Dis., 67, 137, 10.1136/ard.2007.073213
Jin, 2012, Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo, Nat. Genet., 44, 676, 10.1038/ng.2272
Enevold, 2009, Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1, J. Neuroimmunol., 212, 125, 10.1016/j.jneuroim.2009.04.008
Cunninghame Graham, 2011, Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus, PLoS Genet., 7, 10.1371/journal.pgen.1002341
Nejentsev, 2009, Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes, Science, 324, 387, 10.1126/science.1167728
Lincez, 2015, Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes, Diabetes, 64, 2184, 10.2337/db14-1223
Gorman, 2017, The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity, Nat. Immunol., 18, 744, 10.1038/ni.3766
Downes, 2010, Reduced expression of IFIH1 is protective for type 1 diabetes, PLoS One, 5, 10.1371/journal.pone.0012646
Funabiki, 2014, Autoimmune disorders associated with gain of function of the intracellular sensor MDA5, Immunity, 40, 199, 10.1016/j.immuni.2013.12.014
Rutsch, 2015, A specific IFIH1 gain-of-function mutation causes Singleton–Merten syndrome, Am. J. Hum. Genet., 96, 275, 10.1016/j.ajhg.2014.12.014
Rice, 2014, Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling, Nat. Genet., 46, 503, 10.1038/ng.2933
Oda, 2014, Aicardi–Goutières syndrome is caused by IFIH1 mutations, Am. J. Hum. Genet., 95, 121, 10.1016/j.ajhg.2014.06.007
Crow, 2009, Aicardi–Goutières syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity, Hum. Mol. Genet., 18, R130, 10.1093/hmg/ddp293
Rice, 2013, Assessment of interferon-related biomarkers in Aicardi–Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study, Lancet Neurol., 12, 1159, 10.1016/S1474-4422(13)70258-8
Volkman, 2014, The enemy within: endogenous retroelements and autoimmune disease, Nat. Immunol., 15, 415, 10.1038/ni.2872
Maelfait, 2016, Restriction by SAMHD1 limits cGAS/STING-dependent innate and adaptive immune responses to HIV-1, Cell Rep., 16, 1492, 10.1016/j.celrep.2016.07.002
Mackenzie, 2016, Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response, EMBO J., 35, 831, 10.15252/embj.201593339
Ablasser, 2014, TREX1 deficiency triggers cell-autonomous immunity in a cGAS-dependent manner, J. Immunol., 192, 5993, 10.4049/jimmunol.1400737
Gray, 2015, Cutting edge: cGAS is required for lethal autoimmune disease in the Trex1-deficient mouse model of Aicardi–Goutières syndrome, J. Immunol., 195, 1939, 10.4049/jimmunol.1500969
Gao, 2015, Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases, Proc. Natl. Acad. Sci. U. S. A., 112, E5699, 10.1073/pnas.1516465112
Gall, 2012, Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease, Immunity, 36, 120, 10.1016/j.immuni.2011.11.018
Chung, 2018, Human ADAR1 prevents endogenous RNA from triggering translational shutdown, Cell, 172, 10.1016/j.cell.2017.12.038
Liddicoat, 2015, RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself, Science, 349, 1115, 10.1126/science.aac7049
Pestal, 2015, Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development, Immunity, 43, 933, 10.1016/j.immuni.2015.11.001
Eisenberg, 2018, A-to-I RNA editing – immune protector and transcriptome diversifier, Nat. Rev. Genet., 19, 473, 10.1038/s41576-018-0006-1
Rice, 2012, Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature, Nat. Genet., 44, 1243, 10.1038/ng.2414
Mannion, 2014, The RNA-editing enzyme ADAR1 controls innate immune responses to RNA, Cell Rep., 9, 1482, 10.1016/j.celrep.2014.10.041
Hartner, 2009, ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling, Nat. Immunol., 10, 109, 10.1038/ni.1680
Heraud-Farlow, 2017, Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis, Genome Biol., 18, 166, 10.1186/s13059-017-1301-4
Tan, 2017, Dynamic landscape and regulation of RNA editing in mammals, Nature, 550, 249, 10.1038/nature24041
Ramaswami, 2014, RADAR: a rigorously annotated database of A-to-I RNA editing, Nucleic Acids Res., 42, D109, 10.1093/nar/gkt996
Bahn, 2015, Genomic analysis of ADAR1 binding and its involvement in multiple RNA processing pathways, Nat. Commun., 6, 6355, 10.1038/ncomms7355
Solomon, 2017, RNA editing by ADAR1 leads to context-dependent transcriptome-wide changes in RNA secondary structure, Nat. Commun., 8, 1440, 10.1038/s41467-017-01458-8
Vitali, 2010, Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis, Nat. Struct. Mol. Biol., 17, 1043, 10.1038/nsmb.1864
Aktas, 2017, DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome, Nature, 544, 115, 10.1038/nature21715
Cuellar, 2017, Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia, J. Cell Biol., 216, 3535, 10.1083/jcb.201612160
Yu, 2016, Activation of the MDA-5-IPS-1 viral sensing pathway induces cancer cell death and type I IFN-dependent antitumor immunity, Cancer Res., 76, 2166, 10.1158/0008-5472.CAN-15-2142
Wu, 2017, The anticancer functions of RIG-I-like receptors, RIG-I and MDA5, and their applications in cancer therapy, Transl. Res., 190, 51, 10.1016/j.trsl.2017.08.004
Wang, 2010, MDA5 and MAVS mediate type I interferon responses to coxsackie B virus, J. Virol., 84, 254, 10.1128/JVI.00631-09
Slater, 2010, Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium, PLoS Pathog., 6, 10.1371/journal.ppat.1001178
Cao, 2015, MDA5 plays a critical role in interferon response during hepatitis C virus infection, J. Hepatol., 62, 771, 10.1016/j.jhep.2014.11.007
Fredericksen, 2008, Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1, J. Virol., 82, 609, 10.1128/JVI.01305-07
Burke, 2009, Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses, Virology, 395, 121, 10.1016/j.virol.2009.08.039
Akhrymuk, 2016, Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode, Virology, 487, 230, 10.1016/j.virol.2015.09.023
Zalinger, 2015, MDA5 is critical to host defense during infection with murine coronavirus, J. Virol., 89, 12330, 10.1128/JVI.01470-15
Li, 2010, Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5, J. Virol., 84, 6472, 10.1128/JVI.00016-10
Ikegame, 2010, Both RIG-I and MDA5 RNA helicases contribute to the induction of alpha/beta interferon in measles virus-infected human cells, J. Virol., 84, 372, 10.1128/JVI.01690-09
Gitlin, 2010, Melanoma differentiation-associated gene 5 (MDA5) is involved in the innate immune response to Paramyxoviridae infection in vivo, PLoS Pathog., 6, 10.1371/journal.ppat.1000734
Banos-Lara Mdel, 2013, Critical role of MDA5 in the interferon response induced by human metapneumovirus infection in dendritic cells and in vivo, J. Virol., 87, 1242, 10.1128/JVI.01213-12
Dou, 2017, The innate immune receptor MDA5 limits rotavirus infection but promotes cell death and pancreatic inflammation, EMBO J., 36, 10.15252/embj.201696273
Pham, 2016, PKR transduces MDA5-dependent signals for type I IFN induction, PLoS Pathog., 12, 10.1371/journal.ppat.1005489
Melchjorsen, 2010, Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways, J. Virol., 84, 11350, 10.1128/JVI.01106-10
Lu, 2013, Melanoma differentiation-associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication, J. Immunol., 191, 3264, 10.4049/jimmunol.1300512
Zhang, 2018, Hepatitis D virus replication is sensed by MDA5 and induces IFN-beta/lambda responses in hepatocytes, J. Hepatol., 69, 25, 10.1016/j.jhep.2018.02.021
Chen, 2017, ALUternative regulation for gene expression, Trends Cell Biol., 27, 480, 10.1016/j.tcb.2017.01.002