Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway

Springer Science and Business Media LLC - Tập 62 - Trang 357-367 - 2015
Xvhai Cao1, Weilong Lin1, Chengwei Liang1, Dong Zhang1, Fengjian Yang1, Yan Zhang1, Xuelin Zhang1, Jianyong Feng1, Cong Chen1
1Department of Orthopaedics, Hua Dong Hospital Affiliated to Fudan University, Shanghai, China

Tóm tắt

Naringin exhibits antiinflammatory activity and is shown to induce bone formation. Yet the impact of naringin on inflammation-affected bone marrow-derived mesenchymal stem cell (BM-MSC), a promising tool for the regenerative treatment of bone injury, remained to be investigated. We first cultured and characterized the BM-MSCs in vitro and observe the effects of treatments of TNF-α, naringin, or the combination of both on osteogenic differentiation. TNF-α administered at the concentration of 20 ng/ml results in significant reductions in MSC’s cell survival, alkaline phosphatase activity and expressions of two osteogenic genes, Runx2 and Osx. Simultaneous treatment of both TNF-α and naringin is able to rescue such reductions. Further mechanistic studies indicate that TNF-α treatment activates the NF-кB signaling pathway, evidenced by elevated p-IкBα level as well as the increased nuclear fraction of NF-кB subunit, p65. Finally, treatment with both TNF-α and naringin decreases expressions of p-IкBα and nuclear p65, and thus represses NF-кB pathway activated by sole TNF-α treatment. Our findings provide a molecular basis by which naringin restores the TNF-α-induced damage in MSCs and provide novel insights into the application of naringin in the MSC-based treatments for inflammation-induced bone injury.

Tài liệu tham khảo

Kwan Tat S, Padrines M, Theoleyre S, Heymann D, Fortun Y. IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 2004;15(1):49–60. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci USA. 1989;86(7):2336–40. Kato K, Nakane A, Minagawa T, Kasai N, Yamamoto K, Sato N, et al. Human tumor necrosis factor increases the resistance against Listeria infection in mice. Med Microbiol Immunol. 1989;178(6):337–46. Hauser T, Frei K, Zinkernagel RM, Leist TP. Role of tumor necrosis factor in Listeria resistance of nude mice. Med Microbiol Immunol. 1990;179(2):95–104. Blanchard DK, Friedman H, Klein TW, Djeu JY. Induction of interferon-gamma and tumor necrosis factor by Legionella pneumophila: augmentation of human neutrophil bactericidal activity. J Leukoc Biol. 1989;45(6):538–45. Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol. 2001;19:163–96. doi:10.1146/annurev.immunol.19.1.163. Hommes DW, van de Heisteeg BH, van der Spek M, Bartelsman JF, van Deventer SJ. Infliximab treatment for Crohn’s disease: one-year experience in a Dutch Academic Hospital. Inflamm Bowel Dis. 2002;8(2):81–6. McLean RR. Proinflammatory cytokines and osteoporosis. Curr Osteoporos Rep. 2009;7(4):134–9. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci USA. 2011;108(4):1585–90. doi:10.1073/pnas.1018501108. Tocci A, Forte L. Mesenchymal stem cell: use and perspectives. Hematol J. 2003;4(2):92–6. doi:10.1038/sj.thj.6200232. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103(5):1669–75. doi:10.1182/blood-2003-05-1670. Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells. 2006;24(3):679–85. doi:10.1634/stemcells.2004-0308. Wang EA, Israel DI, Kelly S, Luxenberg DP. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71. Yu S, Zhu K, Lai Y, Zhao Z, Fan J, Im HJ, et al. atf4 promotes beta-catenin expression and osteoblastic differentiation of bone marrow mesenchymal stem cells. Int J Biol Sci. 2013;9(3):256–66. doi:10.7150/ijbs.5898. Wong RW, Rabie B, Bendeus M, Hagg U. The effects of Rhizoma Curculiginis and Rhizoma Drynariae extracts on bones. Chin Med. 2007;2:13. doi:10.1186/1749-8546-2-13. Shin YW, Bok SH, Jeong TS, Bae KH, Jeoung NH, Choi MS, et al. Hypocholesterolemic effect of naringin associated with hepatic cholesterol regulating enzyme changes in rats. Int J Vitam Nutr Res. 1999;69(5):341–7. Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complic. 2012;26(6):483–90. doi:10.1016/j.jdiacomp.2012.06.001. Wong KC, Pang WY, Wang XL, Mok SK, Lai WP, Chow HK, et al. Drynaria fortunei-derived total flavonoid fraction and isolated compounds exert oestrogen-like protective effects in bone. Br J Nutr. 2013;110(3):475–85. doi:10.1017/S0007114512005405. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141(11):3956–64. doi:10.1210/endo.141.11.7739. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. Akiyama K, You YO, Yamaza T, Chen C, Tang L, Jin Y, et al. Characterization of bone marrow derived mesenchymal stem cells in suspension. Stem Cell Res Ther. 2012;3(5):40. doi:10.1186/scrt131. Peng CF, Han YL, Jie D, Yan CH, Jian K, Bo L, et al. Overexpression of cellular repressor of E1A-stimulated genes inhibits TNF-alpha-induced apoptosis via NF-kappaB in mesenchymal stem cells. Biochem Biophys Res Commun. 2011;406(4):601–7. doi:10.1016/j.bbrc.2011.02.100. Zhang P, Dai KR, Yan SG, Yan WQ, Zhang C, Chen DQ, et al. Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. Eur J Pharmacol. 2009;607(1–3):1–5. Butler DL, Gooch C, Kinneberg KR, Boivin GP, Galloway MT, Nirmalanandhan VS, et al. The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons. Nat Protoc. 2010;5(5):849–63. doi:10.1038/nprot.2010.14. Jimi E, Aoki K, Saito H, D’Acquisto F, May MJ, Nakamura I, et al. Selective inhibition of NF-kappa B blocks osteoclastogenesis and prevents inflammatory bone destruction in vivo. Nat Med. 2004;10(6):617–24. doi:10.1038/nm1054. Pfeffer K. Biological functions of tumor necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev. 2003;14(3–4):185–91. Endres R, Luz A, Schulze H, Neubauer H, Futterer A, Holland SM, et al. Listeriosis in p47(phox-/-) and TRp55-/- mice: protection despite absence of ROI and susceptibility despite presence of RNI. Immunity. 1997;7(3):419–32. Aggarwal BB. Nuclear factor-kappaB: the enemy within. Cancer Cell. 2004;6(3):203–8. doi:10.1016/j.ccr.2004.09.003. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2–12. doi:10.1080/14041040009362546. Roggia C, Tamone C, Cenci S, Pacifici R, Isaia GC. Role of TNF-alpha producing T-cells in bone loss induced by estrogen deficiency. Minerva Med. 2004;95(2):125–32. Chen X, Hu C, Wang G, Li L, Kong X, Ding Y, et al. Nuclear factor-kappaB modulates osteogenesis of periodontal ligament stem cells through competition with beta-catenin signaling in inflammatory microenvironments. Cell Death Dis. 2013;4:e510. doi:10.1038/cddis.2013.14. Kong X, Liu Y, Ye R, Zhu B, Zhu Y, Liu X, et al. GSK3beta is a checkpoint for TNF-alpha-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments. Biochim Biophys Acta. 2013;1830(11):5119–29. doi:10.1016/j.bbagen.2013.07.027. Fuhr U, Kummert AL. The fate of naringin in humans: A key to grapefruit juice–drug interactions? Clin Pharmacol Ther. 1995;58(4):365–73. doi:10.1016/0009-9236(95)90048-9. Wu JB, Fong YC, Tsai HY, Chen YF, Tsuzuki M, Tang CH. Naringin-induced bone morphogenetic protein-2 expression via PI3 K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. Eur J Pharmacol. 2008;588(2–3):333–41. doi:10.1016/j.ejphar.2008.04.030. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9. Wong RW, Rabie AB. Statin collagen grafts used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg. 2003;41(4):244–8. Sugiyama M, Kodama T, Konishi K, Abe K, Asami S, Oikawa S. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun. 2000;271(3):688–92. doi:10.1006/bbrc.2000.2697. Wong RW, Rabie AB. Effect of naringin on bone cells. J Orthop Res. 2006;24(11):2045–50. doi:10.1002/jor.20279. Liu M, Li Y, Yang ST. Effects of naringin on the proliferation and osteogenic differentiation of human amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2014;. doi:10.1002/term.1911. Jain M, Parmar HS. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflamm Res. 2011;60(5):483–91. doi:10.1007/s00011-010-0295-0.