Implicit–explicit multirate infinitesimal stage-restart methods

Journal of Computational and Applied Mathematics - Tập 438 - Trang 115534 - 2024
Alex C. Fish1, Daniel R. Reynolds1, Steven B. Roberts2
1Department of Mathematics, Southern Methodist University, Dallas, TX, USA
2Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA

Tài liệu tham khảo

Ascher, 1997, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151, 10.1016/S0168-9274(97)00056-1 Cooper, 1980, Additive methods for the numerical solution of ordinary differential equations, Math. Comp., 35, 1159, 10.1090/S0025-5718-1980-0583492-2 Cooper, 1983, Additive Runge-Kutta methods for stiff ordinary differential equations, Math. Comp., 40, 207, 10.1090/S0025-5718-1983-0679441-1 Kennedy, 2003, Additive Runge–Kutta schemes for convection–diffusion–reaction equations, Appl. Numer. Math., 44, 139, 10.1016/S0168-9274(02)00138-1 Kennedy, 2019, Higher-order additive Runge–Kutta schemes for ordinary differential equations, Appl. Numer. Math., 136, 183, 10.1016/j.apnum.2018.10.007 Sandu, 2015, A generalized-structure approach to additive Runge–Kutta methods, SIAM J. Numer. Anal., 53, 17, 10.1137/130943224 Hochbruck, 2005, Explicit exponential Runge–Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 1069, 10.1137/040611434 Luan, 2020, A new class of high-order methods for multirate differential equations, SIAM J. Sci. Comput., 42, A1245, 10.1137/19M125621X Luan, 2021 Luan, 2014, Explicit exponential Runge–Kutta methods of high order for parabolic problems, J. Comput. Appl. Math., 256, 168, 10.1016/j.cam.2013.07.027 Luan, 2016, Parallel exponential Rosenbrock methods, Comput. Math. Appl., 71, 1137, 10.1016/j.camwa.2016.01.020 Günther, 2016, Multirate generalized additive Runge Kutta methods, Numer. Math., 133, 497, 10.1007/s00211-015-0756-z Sandu, 2019, A class of multirate infinitesimal GARK methods, SIAM J. Numer. Anal., 57, 2300, 10.1137/18M1205492 Sarshar, 2019, Design of high-order decoupled multirate GARK schemes, SIAM J. Sci. Comput., 41, A816, 10.1137/18M1182875 Wensch, 2009, Multirate infinitesimal step methods for atmospheric flow simulation, BIT Numer. Math., 49, 449, 10.1007/s10543-009-0222-3 Chinomona, 2021, Implicit-explicit multirate infinitesimal GARK methods, SIAM J. Sci. Comput., 43, A3082, 10.1137/20M1354349 Estep, 2008, An a posteriori–a priori analysis of multiscale operator splitting, SIAM J. Numer. Anal., 46, 1116, 10.1137/07068237X Ropp, 2005, Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems, J. Comput. Phys., 203, 449, 10.1016/j.jcp.2004.09.004 Marchuk, 1968, Some application of splitting-up methods to the solution of mathematical physics problems, Apl. Mat., 13, 103, 10.21136/AM.1968.103142 Strang, 1968, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506, 10.1137/0705041 Spiteri, 2023, Fractional-step Runge–Kutta methods: Representation and linear stability analysis, J. Comput. Phys., 476, 10.1016/j.jcp.2022.111900 Goldman, 1996, Nth-order operator splitting schemes and nonreversible systems, SIAM J. Numer. Anal., 33, 349, 10.1137/0733018 Calvo, 2001, Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations, Appl. Numer. Math., 37, 535, 10.1016/S0168-9274(00)00061-1 Kennedy, 2019, Diagonally implicit Runge–Kutta methods for stiff ODEs, Appl. Numer. Math., 146, 221, 10.1016/j.apnum.2019.07.008 Roberts, 2021, Implicit multirate GARK methods, J. Sci. Comput., 87, 1, 10.1007/s10915-020-01400-z Roberts, 2020, Coupled multirate infinitesimal GARK schemes for stiff systems with multiple time scales, SIAM J. Sci. Comput., 42, A1609, 10.1137/19M1266952 Langville, 2004, The Kronecker product and stochastic automata networks, J. Comput. Appl. Math., 167, 429, 10.1016/j.cam.2003.10.010 W.R. Inc., Mathematica, Version 13.2, Champaign, IL, 2022, URL. Prince, 1981, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math., 7, 67, 10.1016/0771-050X(81)90010-3 Sanderson, 2016, Armadillo: a template-based C++ library for linear algebra, J. Open Source Softw., 1, 26, 10.21105/joss.00026 Sanderson, 2018, A user-friendly hybrid sparse matrix class in C++, 422 Bogacki, 1989, A 3(2) pair of Runge–Kutta formulas, Appl. Math. Lett., 2, 321, 10.1016/0893-9659(89)90079-7 Hairer, 1996 Fish, 2023, Adaptive time step control for multirate infinitesimal methods, SIAM J. Sci. Comput., 45, A958, 10.1137/22M1479798