Implicit–explicit multirate infinitesimal stage-restart methods
Tài liệu tham khảo
Ascher, 1997, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 151, 10.1016/S0168-9274(97)00056-1
Cooper, 1980, Additive methods for the numerical solution of ordinary differential equations, Math. Comp., 35, 1159, 10.1090/S0025-5718-1980-0583492-2
Cooper, 1983, Additive Runge-Kutta methods for stiff ordinary differential equations, Math. Comp., 40, 207, 10.1090/S0025-5718-1983-0679441-1
Kennedy, 2003, Additive Runge–Kutta schemes for convection–diffusion–reaction equations, Appl. Numer. Math., 44, 139, 10.1016/S0168-9274(02)00138-1
Kennedy, 2019, Higher-order additive Runge–Kutta schemes for ordinary differential equations, Appl. Numer. Math., 136, 183, 10.1016/j.apnum.2018.10.007
Sandu, 2015, A generalized-structure approach to additive Runge–Kutta methods, SIAM J. Numer. Anal., 53, 17, 10.1137/130943224
Hochbruck, 2005, Explicit exponential Runge–Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal., 43, 1069, 10.1137/040611434
Luan, 2020, A new class of high-order methods for multirate differential equations, SIAM J. Sci. Comput., 42, A1245, 10.1137/19M125621X
Luan, 2021
Luan, 2014, Explicit exponential Runge–Kutta methods of high order for parabolic problems, J. Comput. Appl. Math., 256, 168, 10.1016/j.cam.2013.07.027
Luan, 2016, Parallel exponential Rosenbrock methods, Comput. Math. Appl., 71, 1137, 10.1016/j.camwa.2016.01.020
Günther, 2016, Multirate generalized additive Runge Kutta methods, Numer. Math., 133, 497, 10.1007/s00211-015-0756-z
Sandu, 2019, A class of multirate infinitesimal GARK methods, SIAM J. Numer. Anal., 57, 2300, 10.1137/18M1205492
Sarshar, 2019, Design of high-order decoupled multirate GARK schemes, SIAM J. Sci. Comput., 41, A816, 10.1137/18M1182875
Wensch, 2009, Multirate infinitesimal step methods for atmospheric flow simulation, BIT Numer. Math., 49, 449, 10.1007/s10543-009-0222-3
Chinomona, 2021, Implicit-explicit multirate infinitesimal GARK methods, SIAM J. Sci. Comput., 43, A3082, 10.1137/20M1354349
Estep, 2008, An a posteriori–a priori analysis of multiscale operator splitting, SIAM J. Numer. Anal., 46, 1116, 10.1137/07068237X
Ropp, 2005, Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems, J. Comput. Phys., 203, 449, 10.1016/j.jcp.2004.09.004
Marchuk, 1968, Some application of splitting-up methods to the solution of mathematical physics problems, Apl. Mat., 13, 103, 10.21136/AM.1968.103142
Strang, 1968, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506, 10.1137/0705041
Spiteri, 2023, Fractional-step Runge–Kutta methods: Representation and linear stability analysis, J. Comput. Phys., 476, 10.1016/j.jcp.2022.111900
Goldman, 1996, Nth-order operator splitting schemes and nonreversible systems, SIAM J. Numer. Anal., 33, 349, 10.1137/0733018
Calvo, 2001, Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations, Appl. Numer. Math., 37, 535, 10.1016/S0168-9274(00)00061-1
Kennedy, 2019, Diagonally implicit Runge–Kutta methods for stiff ODEs, Appl. Numer. Math., 146, 221, 10.1016/j.apnum.2019.07.008
Roberts, 2021, Implicit multirate GARK methods, J. Sci. Comput., 87, 1, 10.1007/s10915-020-01400-z
Roberts, 2020, Coupled multirate infinitesimal GARK schemes for stiff systems with multiple time scales, SIAM J. Sci. Comput., 42, A1609, 10.1137/19M1266952
Langville, 2004, The Kronecker product and stochastic automata networks, J. Comput. Appl. Math., 167, 429, 10.1016/j.cam.2003.10.010
W.R. Inc., Mathematica, Version 13.2, Champaign, IL, 2022, URL.
Prince, 1981, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math., 7, 67, 10.1016/0771-050X(81)90010-3
Sanderson, 2016, Armadillo: a template-based C++ library for linear algebra, J. Open Source Softw., 1, 26, 10.21105/joss.00026
Sanderson, 2018, A user-friendly hybrid sparse matrix class in C++, 422
Bogacki, 1989, A 3(2) pair of Runge–Kutta formulas, Appl. Math. Lett., 2, 321, 10.1016/0893-9659(89)90079-7
Hairer, 1996
Fish, 2023, Adaptive time step control for multirate infinitesimal methods, SIAM J. Sci. Comput., 45, A958, 10.1137/22M1479798