Porous effects on the fractional modeling of magnetohydrodynamic pulsatile flow: an analytic study via strong kernels
Tóm tắt
Từ khóa
Tài liệu tham khảo
Iguchi M, Ohmi M. Transition to turbulence in a pulsatile pipe flow: characteristics of reversing flow accompanied by relaminarization. Bull JSME. 1982;25:1529–36.
Thomas C, Bassom AP, Blennerhassett PJ, Davies C. The linear stability of oscillatory Poiseuille flow in channels and pipes. philos Trans R Soc. 2011;467:2643–62.
Van W. Wittberg SP, L Bulusu, Fuchs KV, Plesniak L, Non-Newtonian perspectives on pulsatile blood-analog flows in a 180 curved artery model. Phys Fluids. 2015;27(7):071901.
Hong H, Yeom E, Ji HS, Kim HD, Kim KC. Characteristics of pulsatile flows in curved stenosis channels. PLoS ONE. 2017;12(10):e0186300.
Liu GT, Wang XJ, Ai BQ, Liu LG. Numerical study of pulsating flow through a tapered artery with stenosis. Chin J Phys. 2004;42(4):401–9.
Sankar DS, Hemalatha K. Pulsatile flow of Herschel-Bulkley fluid through catheterized arteries-A mathematical model. Appl Math Model. 2007;31:1497–517.
Siddiqui S, Verma N, Mishra S, Gupta R. Mathematical modelling of pulsatile flow of Cassons fluid in arterial stenosis. Appl Math Comput. 2009;210:1–10.
Reddy JVR, Srikanth D, Murthy SVS. Mathematical modeling of pulsatile flow of blood through catheterized un-symmetric stenosed artery-Effects of tapering angle and slip velocity. Eur J Mech B/Fluids. 2014;48:236–44.
Atlas G, Dhar S, John KJ. Pulsatile aortic pressure-flow analysis using fractional calculus for minimally-invasive applications. J Biomed Eng Biosci. 2014;1:1–7.
Zaman A, Ali N, Sajid M, Hayat T. Numerical and analytical study of two-layered unsteady blood flow through catheterized artery. PLoS ONE. 2016;11(8):e0161377. https://doi.org/10.1371/journal.pone.0161377.
Jose FGA, Kashif AA, Olusola K, Ahmet Y. Chaos in a calcium oscillation model via Atangana–Baleanu operator with strong memory. Eur Phys J Plus. 2019;134:140. https://doi.org/10.1140/epjp/i2019-12550-1.
Abro KA, Ahmet Y. Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms. Iran J Sci Technol Trans A Sci. 2019;43:1–8. https://doi.org/10.1007/s40995-019-00687-4.
Qureshi S, Atangana A. Mathematical analysis of dengue fever outbreak by novel fractional operators with field data. Phys A Stat Mech Appl. 2019. https://doi.org/10.1016/j.physa.2019.121127.
Kashif AA, Memon Anwer A, Shahid HA, Ilyas K, Tlili I. Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: an application to solar energy. Energy Rep. 2019;5:41–9. https://doi.org/10.1016/j.egyr.2018.09.009.
Atangana A, Qureshi S. Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals (Elsevier). 2019;123:320–37. https://doi.org/10.1016/j.chaos.2019.04.020.
Kashif AA, Ali AM, Anwer AM. Functionality of circuit via modern fractional differentiations. Analog Integr Circ Sig Process. 2019;99:11–21. https://doi.org/10.1007/s10470-018-1371-6.
Sania Q, Norodin AR, Dumitru B. New numerical aspects of Caputo–Fabrizio fractional derivative operator. Mathematics. 2019;7:374. https://doi.org/10.3390/math7040374SCIE.
Abro KA, Ilyas K, Jose FGA. A mathematical analysis of a circular pipe in rate type fluid via Hankel transform. Eur Phys J Plus. 2018;133:397–405. https://doi.org/10.1140/epjp/i2018-12186-7.
Morales-Delgado VF, Gomez-Aguilar JF, Saad KM, Khan MA, Agarwal P. Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach. Phys A. 2019. https://doi.org/10.1016/j.physa.2019.02.018.
Riaz MB, Zafar AA. Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo–Fabrizio derivatives. Math Model Nat Phenom. 2018;13(1):1–12.
Rachid H. Effects of heat transfer and an endoscope on peristaltic flow of a fractional Maxwell fluid in a vertical tube. Abstract Appl Anal (2015), Article ID 360918. http://dx.doi.org/10.1155/2015/360918.
Kashif AA, Ilyas K. Effects of CNTs on magnetohydrodynamic flow of methanol based nanofluids via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Therm Sci. 2018;23:165–165. https://doi.org/10.2298/TSCI180116165A.
Kashif AA, Ali DC, Irfan AA, Ilyas K. Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Therm Anal Calorim. 2018;135:2197–207. https://doi.org/10.1007/s10973-018-7302-z.
Singh J, Kumar D, Baleanu D. New aspects of fractional Biswas–Milovic model with Mittag–Leffler law. Math Model Nat Phenom. 2019;14(3):1–13.
Kashif AA, Ilyas K, Asifa T. Application of Atangana–Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate. Math Model Nat Phenom. 2018;13:1. https://doi.org/10.1051/mmnp/2018007.
Atangana A. Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals. 2017;102:396–406.
Kashif AA, Anwar AM, Muhammad AU. A comparative mathematical analysis of RL and RC electrical circuits via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Eur Phys J Plus. 2018;133:113. https://doi.org/10.1140/epjp/i2018-11953-8.
Owolabi KM, Atangana A. On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems. Chaos Interdiscip J Nonlinear Sci. 2019;29(2):1–12.
Abro KA, Ilyas K. Analysis of heat and mass transfer in MHD flow of generalized Casson fluid in a porous space via non-integer order derivative without singular kernel. Chin J Phys. 2017;55(4):1583–95. https://doi.org/10.1016/j.cjph.2017.05.012.
Muzaffar HL, Abro KA, Asif AS. Helical flows of fractional viscoelastic fluid in a circular pipe. Int J Adv Appl Sci. 2017;4(10):97–105. https://doi.org/10.21833/ijaas.2017.010.014.
Arshad K, Kashif AA, Asifa T, Ilyas K. Atangana–Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy. 2017;19(8):1–12. https://doi.org/10.3390/e19080279.
Abdeljawad T. Fractional operators with generalized Mittag-Leffler kernels and their differintegrals. Chaos. 2019;29:023102. https://doi.org/10.1063/1.5085726.
Abdeljawad T, Baleanu D. On fractional derivatives with generalized Mittag–Leffler kernels. Adv Differ Equ. 2018. https://doi.org/10.1186/s13662-018-1914-2.
Jarad F, Thabet A, Zakia H. On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals. 2018;117:16–20.
Abdeljawad T. Fractional difference operators with discrete generalized Mittag–Leffler kernels. Chaos Solitons Fractals. 2019;126:315–24.
Kashif AA, Abdon A. Mathematical analysis of memristor through fractal- fractional differential operators: a numerical study. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6378.
Adesanya SO, Makinde OD. Heat transfer to magnetohydrodynamic non-Newtonian couple stress pulsatile flow between two parallel porous plates. Z für Naturforschung A. 2012;67(10/11):647–56.
Aziz UA, Mukarram A, Kashif AA. Electroosmotic slip flow of Oldroyd-B fluid between two plates with non-singular kernel. J Comput Appl Math. 2020;376:112885. https://doi.org/10.1016/j.cam.2020.112885.
Acay B, Bas E, Abdeljawad T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fractals. 2020;130:109438. https://doi.org/10.1016/j.chaos.2019.109438.
Abdeljawad T, Al-Mdallal QM. Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality. J Comput Appl Math. 2018;339:218–30. https://doi.org/10.1016/j.cam.2017.10.021.
Bhojraj L, Kashif AA, Abdul WS. Thermodynamical analysis of heat transfer of gravity-driven fluid flow via fractional treatment: an analytical study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09429-w.
Francisco Gomez JS, Victor M, Marco T. Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation. Revis Mex de Física. 2018;65(1):82–8.
Kashif AA, Abdon A. A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations. Eur Phys J Plus. 2020;135:226. https://doi.org/10.1140/epjp/s13360-020-00136-x.
Abdon A, Gomez-Aguilar JF. Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur Phys J Plus. 2018;133:1–23.
Khamis S, Makinde OD, Nkansah-Gyekye Y. Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force. Int J Numer Meth Heat Fluid Flow. 2015;25(7):1638–57.
Kashif AA, Ambreen S, Abdon A. Thermal stratification of rotational second-grade fluid through fractional differential operators. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09312-8.
Abdon A, Gómez-Aguilar JF. Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals. 2018;114:516–35.
Abro KA, Abdon A. Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid. Phys Scr. 2020;95:035228. https://doi.org/10.1088/1402-4896/ab560c.
Saad KM, Khader MM, Gómez-Aguilar JF. Numerical solutions of the fractional Fisher’s type equations with Atangana–Baleanu fractional derivative by using spectral collocation methods. Chaos Interdiscip J Nonlinear Sci. 2019;29(2):1–13.
Kashif AA. A fractional and analytic investigation of thermo-diffusion process on free convection flow: an application to surface modification technology. Eur Phys J Plus. 2020. https://doi.org/10.1140/epjp/s13360-019-00046-7.
Khamis S, Makinde OD, Nkansah-Gyekye Y. Buoyancy-driven heat transfer of water-based nanofluid in a permeable cylindrical pipe with navier slip through a saturated porous medium. J Porous Media. 2015;18(12):1169–80.
Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl. 2015;1:73–85.
Abro KA, Mukarrum H, Mirza MB. A mathematical analysis of magnetohydrodynamic generalized burger fluid for permeable oscillating plate. Punjab Univ J Math. 2018;50(2):97–111.
Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci 2016;20:763–9.
Kashif AA, Muhammad AS. Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo–Fabrizoi fractional derivatives. Punjab Univ J Math. 2017;49(2):113–25.
Kashif AA, Muhammad NM, Gomez-Aguilar JF. Functional application of Fourier sine transform in radiating gas flow with non-singular and non-local kernel. J Braz Soc Mech Sci Eng. 2019;41:400. https://doi.org/10.1007/s40430-019-1899-0.
Kashif AA, Ilyas K, Kottakkaran SN. Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit. Chaos Solitons Fractals. 2019;129:40–5. https://doi.org/10.1016/j.chaos.2019.08.001.