Porous effects on the fractional modeling of magnetohydrodynamic pulsatile flow: an analytic study via strong kernels

Kashif Ali Abro1, Abdon Atangana2
1Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2Institute of Ground Water Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Iguchi M, Ohmi M. Transition to turbulence in a pulsatile pipe flow: characteristics of reversing flow accompanied by relaminarization. Bull JSME. 1982;25:1529–36.

Stettler JC, Hussain AKM. On transition of the pulsatile pipe flow. J Fluid Mech. 1986;170:169–97.

Thomas C, Bassom AP, Blennerhassett PJ, Davies C. The linear stability of oscillatory Poiseuille flow in channels and pipes. philos Trans R Soc. 2011;467:2643–62.

Van W. Wittberg SP, L Bulusu, Fuchs KV, Plesniak L, Non-Newtonian perspectives on pulsatile blood-analog flows in a 180 curved artery model. Phys Fluids. 2015;27(7):071901.

Hong H, Yeom E, Ji HS, Kim HD, Kim KC. Characteristics of pulsatile flows in curved stenosis channels. PLoS ONE. 2017;12(10):e0186300.

Liu GT, Wang XJ, Ai BQ, Liu LG. Numerical study of pulsating flow through a tapered artery with stenosis. Chin J Phys. 2004;42(4):401–9.

Sankar DS, Hemalatha K. Pulsatile flow of Herschel-Bulkley fluid through catheterized arteries-A mathematical model. Appl Math Model. 2007;31:1497–517.

Siddiqui S, Verma N, Mishra S, Gupta R. Mathematical modelling of pulsatile flow of Cassons fluid in arterial stenosis. Appl Math Comput. 2009;210:1–10.

Reddy JVR, Srikanth D, Murthy SVS. Mathematical modeling of pulsatile flow of blood through catheterized un-symmetric stenosed artery-Effects of tapering angle and slip velocity. Eur J Mech B/Fluids. 2014;48:236–44.

Atlas G, Dhar S, John KJ. Pulsatile aortic pressure-flow analysis using fractional calculus for minimally-invasive applications. J Biomed Eng Biosci. 2014;1:1–7.

Zaman A, Ali N, Sajid M, Hayat T. Numerical and analytical study of two-layered unsteady blood flow through catheterized artery. PLoS ONE. 2016;11(8):e0161377. https://doi.org/10.1371/journal.pone.0161377.

Jose FGA, Kashif AA, Olusola K, Ahmet Y. Chaos in a calcium oscillation model via Atangana–Baleanu operator with strong memory. Eur Phys J Plus. 2019;134:140. https://doi.org/10.1140/epjp/i2019-12550-1.

Abro KA, Ahmet Y. Fractional treatment of vibration equation through modern analogy of fractional differentiations using integral transforms. Iran J Sci Technol Trans A Sci. 2019;43:1–8. https://doi.org/10.1007/s40995-019-00687-4.

Qureshi S, Atangana A. Mathematical analysis of dengue fever outbreak by novel fractional operators with field data. Phys A Stat Mech Appl. 2019. https://doi.org/10.1016/j.physa.2019.121127.

Kashif AA, Memon Anwer A, Shahid HA, Ilyas K, Tlili I. Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: an application to solar energy. Energy Rep. 2019;5:41–9. https://doi.org/10.1016/j.egyr.2018.09.009.

Atangana A, Qureshi S. Modeling attractors of chaotic dynamical systems with fractal-fractional operators. Chaos Solitons Fractals (Elsevier). 2019;123:320–37. https://doi.org/10.1016/j.chaos.2019.04.020.

Kashif AA, Ali AM, Anwer AM. Functionality of circuit via modern fractional differentiations. Analog Integr Circ Sig Process. 2019;99:11–21. https://doi.org/10.1007/s10470-018-1371-6.

Sania Q, Norodin AR, Dumitru B. New numerical aspects of Caputo–Fabrizio fractional derivative operator. Mathematics. 2019;7:374. https://doi.org/10.3390/math7040374SCIE.

Abro KA, Ilyas K, Jose FGA. A mathematical analysis of a circular pipe in rate type fluid via Hankel transform. Eur Phys J Plus. 2018;133:397–405. https://doi.org/10.1140/epjp/i2018-12186-7.

Morales-Delgado VF, Gomez-Aguilar JF, Saad KM, Khan MA, Agarwal P. Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach. Phys A. 2019. https://doi.org/10.1016/j.physa.2019.02.018.

Riaz MB, Zafar AA. Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo–Fabrizio derivatives. Math Model Nat Phenom. 2018;13(1):1–12.

Rachid H. Effects of heat transfer and an endoscope on peristaltic flow of a fractional Maxwell fluid in a vertical tube. Abstract Appl Anal (2015), Article ID 360918. http://dx.doi.org/10.1155/2015/360918.

Kashif AA, Ilyas K. Effects of CNTs on magnetohydrodynamic flow of methanol based nanofluids via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Therm Sci. 2018;23:165–165. https://doi.org/10.2298/TSCI180116165A.

Kashif AA, Ali DC, Irfan AA, Ilyas K. Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Therm Anal Calorim. 2018;135:2197–207. https://doi.org/10.1007/s10973-018-7302-z.

Singh J, Kumar D, Baleanu D. New aspects of fractional Biswas–Milovic model with Mittag–Leffler law. Math Model Nat Phenom. 2019;14(3):1–13.

Kashif AA, Ilyas K, Asifa T. Application of Atangana–Baleanu fractional derivative to convection flow of MHD Maxwell fluid in a porous medium over a vertical plate. Math Model Nat Phenom. 2018;13:1. https://doi.org/10.1051/mmnp/2018007.

Atangana A. Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals. 2017;102:396–406.

Kashif AA, Anwar AM, Muhammad AU. A comparative mathematical analysis of RL and RC electrical circuits via Atangana–Baleanu and Caputo–Fabrizio fractional derivatives. Eur Phys J Plus. 2018;133:113. https://doi.org/10.1140/epjp/i2018-11953-8.

Owolabi KM, Atangana A. On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems. Chaos Interdiscip J Nonlinear Sci. 2019;29(2):1–12.

Abro KA, Ilyas K. Analysis of heat and mass transfer in MHD flow of generalized Casson fluid in a porous space via non-integer order derivative without singular kernel. Chin J Phys. 2017;55(4):1583–95. https://doi.org/10.1016/j.cjph.2017.05.012.

Muzaffar HL, Abro KA, Asif AS. Helical flows of fractional viscoelastic fluid in a circular pipe. Int J Adv Appl Sci. 2017;4(10):97–105. https://doi.org/10.21833/ijaas.2017.010.014.

Arshad K, Kashif AA, Asifa T, Ilyas K. Atangana–Baleanu and Caputo Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy. 2017;19(8):1–12. https://doi.org/10.3390/e19080279.

Abdeljawad T. Fractional operators with generalized Mittag-Leffler kernels and their differintegrals. Chaos. 2019;29:023102. https://doi.org/10.1063/1.5085726.

Abdeljawad T, Baleanu D. On fractional derivatives with generalized Mittag–Leffler kernels. Adv Differ Equ. 2018. https://doi.org/10.1186/s13662-018-1914-2.

Jarad F, Thabet A, Zakia H. On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals. 2018;117:16–20.

Abdeljawad T. Fractional difference operators with discrete generalized Mittag–Leffler kernels. Chaos Solitons Fractals. 2019;126:315–24.

Kashif AA, Abdon A. Mathematical analysis of memristor through fractal- fractional differential operators: a numerical study. Math Methods Appl Sci. 2020. https://doi.org/10.1002/mma.6378.

Adesanya SO, Makinde OD. Heat transfer to magnetohydrodynamic non-Newtonian couple stress pulsatile flow between two parallel porous plates. Z für Naturforschung A. 2012;67(10/11):647–56.

Aziz UA, Mukarram A, Kashif AA. Electroosmotic slip flow of Oldroyd-B fluid between two plates with non-singular kernel. J Comput Appl Math. 2020;376:112885. https://doi.org/10.1016/j.cam.2020.112885.

Acay B, Bas E, Abdeljawad T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fractals. 2020;130:109438. https://doi.org/10.1016/j.chaos.2019.109438.

Abdeljawad T, Al-Mdallal QM. Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality. J Comput Appl Math. 2018;339:218–30. https://doi.org/10.1016/j.cam.2017.10.021.

Bhojraj L, Kashif AA, Abdul WS. Thermodynamical analysis of heat transfer of gravity-driven fluid flow via fractional treatment: an analytical study. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09429-w.

Francisco Gomez JS, Victor M, Marco T. Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation. Revis Mex de Física. 2018;65(1):82–8.

Kashif AA, Abdon A. A comparative study of convective fluid motion in rotating cavity via Atangana–Baleanu and Caputo–Fabrizio fractal–fractional differentiations. Eur Phys J Plus. 2020;135:226. https://doi.org/10.1140/epjp/s13360-020-00136-x.

Abdon A, Gomez-Aguilar JF. Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur Phys J Plus. 2018;133:1–23.

Khamis S, Makinde OD, Nkansah-Gyekye Y. Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force. Int J Numer Meth Heat Fluid Flow. 2015;25(7):1638–57.

Kashif AA, Ambreen S, Abdon A. Thermal stratification of rotational second-grade fluid through fractional differential operators. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09312-8.

Abdon A, Gómez-Aguilar JF. Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals. 2018;114:516–35.

Abro KA, Abdon A. Role of non-integer and integer order differentiations on the relaxation phenomena of viscoelastic fluid. Phys Scr. 2020;95:035228. https://doi.org/10.1088/1402-4896/ab560c.

Saad KM, Khader MM, Gómez-Aguilar JF. Numerical solutions of the fractional Fisher’s type equations with Atangana–Baleanu fractional derivative by using spectral collocation methods. Chaos Interdiscip J Nonlinear Sci. 2019;29(2):1–13.

Kashif AA. A fractional and analytic investigation of thermo-diffusion process on free convection flow: an application to surface modification technology. Eur Phys J Plus. 2020. https://doi.org/10.1140/epjp/s13360-019-00046-7.

Khamis S, Makinde OD, Nkansah-Gyekye Y. Buoyancy-driven heat transfer of water-based nanofluid in a permeable cylindrical pipe with navier slip through a saturated porous medium. J Porous Media. 2015;18(12):1169–80.

Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Prog Fract Differ Appl. 2015;1:73–85.

Abro KA, Mukarrum H, Mirza MB. A mathematical analysis of magnetohydrodynamic generalized burger fluid for permeable oscillating plate. Punjab Univ J Math. 2018;50(2):97–111.

Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Thermal Sci 2016;20:763–9.

Kashif AA, Muhammad AS. Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo–Fabrizoi fractional derivatives. Punjab Univ J Math. 2017;49(2):113–25.

Kashif AA, Muhammad NM, Gomez-Aguilar JF. Functional application of Fourier sine transform in radiating gas flow with non-singular and non-local kernel. J Braz Soc Mech Sci Eng. 2019;41:400. https://doi.org/10.1007/s40430-019-1899-0.

Kashif AA, Ilyas K, Kottakkaran SN. Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit. Chaos Solitons Fractals. 2019;129:40–5. https://doi.org/10.1016/j.chaos.2019.08.001.

Abro KA, Khan I, Nisar KS. Use of Atangana–Baleanu fractional derivative in helical flow of a circular pipe. Fractals. 2020. https://doi.org/10.1142/s0218348x20400496.