ESR/ERS statement paper on lung cancer screening

European Radiology - Tập 30 - Trang 3277-3294 - 2020
Hans-Ulrich Kauczor1, Anne-Marie Baird2, Torsten Gerriet Blum3, Lorenzo Bonomo4, Clementine Bostantzoglou5, Otto Burghuber6, Blanka Čepická7, Alina Comanescu8, Sébastien Couraud9,10, Anand Devaraj11, Vagn Jespersen12, Sergey Morozov13, Inbar Nardi Agmon14, Nir Peled15, Pippa Powell16, Helmut Prosch17, Sofia Ravara18,19, Janette Rawlinson20, Marie-Pierre Revel21, Mario Silva22, Annemiek Snoeckx23, Bram van Ginneken24,25, Jan P. van Meerbeeck26, Constantine Vardavas27,28, Oyunbileg von Stackelberg1, Mina Gaga29
1Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, German Center of Lung Research, Heidelberg, Germany
2Central Pathology Laboratory, Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
3Department of Pneumology, Klinikum Emil von Behring, Berlin, Germany
4Department of Radiology, Policlinico Universitario Agostino Gemelli, Rome, Italy
5Intensive Care Unit, “Korgialeneion-Benakeion” General Hospital, Athens, Greece
6Otto Wagner Hospital Vienna, Vienna, Austria
7S.E.N.A. s.r.o, Prague, Czech Republic
8Community Health Association Romania, Bucharest, Romania
9Service de Pneumologie et Oncologie Thoracique, Hospices Civils de Lyon, Lyon, France
10Faculté de Médecine et de Maïeutique Lyon Sud – Charles Mérieux, Université Claude Bernard Lyon I, Oullins, France
11Royal Brompton Hospital, London, UK
12Holstebro, Denmark
13Department of Health Care of Moscow, Research and Practical Clinical Center of Diagnostics and Telemedicine Technologies, Moscow, Russian Federation
14Internal Medicine F, Rabin Medical Center, Petah Tikva, Israel
15Thoracic Cancer Unit, Rabin Medical Center, Petach Tiqwa, Israel
16European Lung Foundation, Sheffield, UK
17Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
18Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilha, Portugal
19Tobacco Cessation Unit, CHCB University Hospital, Covilha, Portugal
20ELF Advocacy, Tipton, UK
21Radiology Department, Cochin Hospital, APHP, Paris, France
22Section of Radiology, Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy
23Radiology, University Hospital of Antwerp, Edegem, Belgium
24Image Sciences Institute, University Medical Centre, Utrecht, The Netherlands
25Department of Radiology, Nijmegen Medical Centre, Nijmegen, The Netherlands
26Pulmonology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
27Clinic of Social and Family Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
28Center for Global Tobacco Control, Department of Society, Human Development and Health, Harvard School of Public Health, Boston, USA
297th Respiratory Medicine Department, Athens Chest Hospital Sotiria, Athens, Greece

Tóm tắt

In Europe, lung cancer ranks third among the most common cancers, remaining the biggest killer. Since the publication of the first European Society of Radiology and European Respiratory Society joint white paper on lung cancer screening (LCS) in 2015, many new findings have been published and discussions have increased considerably. Thus, this updated expert opinion represents a narrative, non-systematic review of the evidence from LCS trials and description of the current practice of LCS as well as aspects that have not received adequate attention until now. Reaching out to the potential participants (persons at high risk), optimal communication and shared decision-making will be key starting points. Furthermore, standards for infrastructure, pathways and quality assurance are pivotal, including promoting tobacco cessation, benefits and harms, overdiagnosis, quality, minimum radiation exposure, definition of management of positive screen results and incidental findings linked to respective actions as well as cost-effectiveness. This requires a multidisciplinary team with experts from pulmonology and radiology as well as thoracic oncologists, thoracic surgeons, pathologists, family doctors, patient representatives and others. The ESR and ERS agree that Europe’s health systems need to adapt to allow citizens to benefit from organised pathways, rather than unsupervised initiatives, to allow early diagnosis of lung cancer and reduce the mortality rate. Now is the time to set up and conduct demonstration programmes focusing, among other points, on methodology, standardisation, tobacco cessation, education on healthy lifestyle, cost-effectiveness and a central registry. Key Points • Pulmonologists and radiologists both have key roles in the set up of multidisciplinary LCS teams with experts from many other fields. • Pulmonologists identify people eligible for LCS, reach out to family doctors, share the decision-making process and promote tobacco cessation. • Radiologists ensure appropriate image quality, minimum dose and a standardised reading/reporting algorithm, together with a clear definition of a “positive screen”. • Strict algorithms define the exact management of screen-detected nodules and incidental findings. • For LCS to be (cost-)effective, it has to target a population defined by risk prediction models.

Tài liệu tham khảo

Ferlay J, Colombet M, Soerjomataram I et al (2018) Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356–387 Malvezzi M, Carioli G, Bertuccio P et al (2017) European cancer mortality predictions for the year 2017, with focus on lung cancer. Ann Oncol 28:1117–1123 World Bank (1999) Curbing the epidemic: governments and the economics of tobacco control (English). World Bank, Washington, DC Kauczor HU, Bonomo L, Gaga M et al (2015) ESR/ERS white paper on lung cancer screening. Eur Respir J 46:28–39 Quaife SL, Vrinten C, Ruparel M et al (2018) Smokers’ interest in a lung cancer screening programme: a national survey in England. BMC Cancer 18:497 Broekhuizen H, Groothuis-Oudshoorn CGM, Vliegenthart R et al (2017) Public preferences for lung cancer screening policies. Value Health 20:961–968 Stone E, Vachani A (2016) Tobacco control and tobacco cessation in lung cancer-too little, too late? Semin Respir Crit Care Med 37:649–658 Macmillan Cancer Support. Manchester’s Lung Health Check Pilot (2017). http://www.macmillan.org.uk. Accessed Aug 2019 Brain K, Lifford KJ, Carter B et al (2016) Long-term psychosocial outcomes of low-dose CT screening: results of the UK Lung Cancer screening randomised controlled trial. Thorax 71:996–1005 Mazzone PJ, Silvestri GA, Patel S et al (2018) Screening for lung cancer: CHEST guideline and expert panel report. Chest 153:954–985 Tanner NT, Silvestri GA (2019) Shared decision-making and lung cancer screening: let’s get the conversation started. Chest 155:21–24 Politi MC, Studts JL, Hayslip JW (2012) Shared decision making in oncology practice: what do oncologists need to know? Oncologist 17:91–100 Lowenstein LM, Deyter GMR, Nishi S et al (2018) Shared decision-making conversations and smoking cessation interventions: critical components of low-dose CT lung cancer screening programs. Transl Lung Cancer Res 7:254–271 Aberle DR, Adams AM, Berg CD et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409 de Koning H, van der Aalst C, ten Haaf K et al (2018) PLO2.05 Effects of volume CT lung cancer screening: mortality results of the NELSON randomised-controlled population based trial. J Thorac Oncol; 13: Suppl., S185 Pinsky PF (2018) Lung cancer screening with low-dose CT: a world-wide view. Transl Lung Cancer Res 7:234–242 Moyer VA (2014) Screening for lung cancer: U.S. preventive services task force recommendation statement. Ann Intern Med 160:330–338 Wood DE, Kazerooni EA, Baum SL et al (2018) Lung cancer screening, version 3.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 16:412–441 van Klaveren RJ, Oudkerk M, Prokop M et al (2009) Management of lung nodules detected by volume CT scanning. N Engl J Med 361:2221–2229 Crosbie PA, Balata H, Evison M et al (2019) Implementing lung cancer screening: baseline results from a community-based ‘Lung health check’ pilot in deprived areas of Manchester. Thorax 74:405–409 Rzyman W, Szurowska E, Adamek M (2019) Implementation of lung cancer screening at the national level: polish example. Transl Lung Cancer Res 8(Suppl. 1):S95–S105 Kovalchik SA, Tammemagi M, Berg CD et al (2013) Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med 369:245–254 Black WC, Gareen IF, Soneji SS et al (2014) Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med 371:1793–1802 Hazelton WD, Clements MS, Moolgavkar SH (2005) Multistage carcinogenesis and lung cancer mortality in three cohorts. Cancer Epidemiol Biomark Prev 14:1171–1181 Raji OY, Duffy SW, Agbaje OF et al (2012) Predictive accuracy of the Liverpool Lung project risk model for stratifying patients for computed tomography screening for lung cancer: a case-control and cohort validation study. Ann Intern Med 157:242–250 Knoke JD, Burns DM, Thun MJ (2008) The change in excess risk of lung cancer attributable to smoking following smoking cessation: an examination of different analytic approaches using CPS-I data. Cancer Causes Control 19:207–219 Bach PB, Kattan MW, Thornquist MD et al (2003) Variations in lung cancer risk among smokers. J Natl Cancer Inst 95:470–478 Tammemagi MC, Katki HA, Hocking WG et al (2013) Selection criteria for lung-cancer screening. N Engl J Med 368:728–736 Meza R, Hazelton WD, Colditz GA et al (2008) Analysis of lung cancer incidence in the nurses’ health and the health professionals’ follow-up studies using a multistage carcinogenesis model. Cancer Causes Control 19:317–328 Ten Haaf K, Jeon J, Tammemagi MC et al (2017) Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med 14:e1002277 Baldwin DR, Duffy SW, Wald NJ et al (2011) UK Lung screen (UKLS) nodule management protocol: modelling of a single screen randomised controlled trial of low-dose CT screening for lung cancer. Thorax 66:308–313 Tammemagi MC (2018) Selecting lung cancer screenees using risk prediction models—where do we go from here. Transl Lung Cancer Res 7:243–253 Criss SD, Sheehan DF, Palazzo L et al (2018) Population impact of lung cancer screening in the United States: projections from a microsimulation model. PLoS Med 15:e1002506 Patz EFJ, Greco E, Gatsonis C et al (2016) Lung cancer incidence and mortality in National Lung Screening Trial participants who underwent low-dose CT prevalence screening: a retrospective cohort analysis of a randomised, multicentre, diagnostic screening trial. Lancet Oncol 17:590–599 Pastorino U, Silva M, Sestini S et al (2019) Prolonged lung cancer screening reduced 10-year mortality in the MILD trial. Ann Oncol 30:1162–1169 Yousaf-Khan U, van der Aalst C, de Jong PA et al (2017) Final screening round of the NELSON lung cancer screening trial: the effect of a 2.5-year screening interval. Thorax 72:48–56 Mazzone PJ, Sears CR, Arenberg DA et al (2017) Evaluating molecular biomarkers for the early detection of lung cancer: when is a biomarker ready for clinical use? An official American Thoracic Society policy statement. Am J Respir Crit Care Med 196:e15–e29 de Koning HJ, Meza R, Plevritis SK et al (2014) Benefits and harms of computed tomography lung cancer screening strategies: a comparative modeling study for the U.S. preventive services task force. Ann Intern Med 160:311–320 Jaklitsch MT, Jacobson FL, Austin JH et al (2012) The American Association for Thoracic Surgery guidelines for lung cancer screening using low-dose computed tomography scans for lung cancer survivors and other high-risk groups. J Thorac Cardiovasc Surg 144:33–38 National Comprehensive Cancer Network (2019) NCCN Clinical Practice Guidelines in Oncology: Lung Cancer Screening. Version 2. Plymouth Meeting, PA, NCCN Canadian Task Force on Preventive Health Care (2016) Recommendations on screening for lung cancer. CMAJ 188:425–432 Rota M, Pizzato M, La Vecchia C et al (2019) Efficacy of lung cancer screening appears to increase with prolonged intervention: results from the MILD trial and a meta-analysis. Ann Oncol 30:1040–1043 World Health Organization (2019) European Tobacco Use: Trends Report 2019. Geneva, WHO Lopez AD, Collishaw NE, Piha T (1994) A descriptive model of the cigarette epidemic in developed countries. Tob Control 3:242–247 Hiscock R, Bauld L, Amos A et al (2012) Smoking and socioeconomic status in England: the rise of the never smoker and the disadvantaged smoker. J Public Health (Oxf) 34:390–396 National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health (2014) The Health Consequences of Smoking–50 Years of Progress: a Report of the Surgeon General. Atlanta, GA, Centers for Disease Control and Prevention (US) Peretti-Watel P, Seror V, Verger P et al (2014) Smokers’ risk perception, socioeconomic status and source of information on cancer. Addict Behav 39:1304–1310 Parsons A, Daley A, Begh R et al (2010) Influence of smoking cessation after diagnosis of early stage lung cancer on prognosis: systematic review of observational studies with meta-analysis. BMJ 340:b5569 Jimenez-Ruiz CA, Andreas S, Lewis KE et al (2015) Statement on smoking cessation in COPD and other pulmonary diseases and in smokers with comorbidities who find it difficult to quit. Eur Respir J 46:61–79 Fucito LM, Czabafy S, Hendricks PS et al (2016) Pairing smoking-cessation services with lung cancer screening: a clinical guideline from the Association for the Treatment of tobacco use and dependence and the Society for Research on nicotine and tobacco. Cancer 122:1150–1159 van der Aalst CM, van den Bergh KA, Willemsen MC et al (2010) Lung cancer screening and smoking abstinence: 2 year follow-up data from the Dutch-Belgian randomised controlled lung cancer screening trial. Thorax 65:600–605 Park ER, Ostroff JS, Rakowski W et al (2009) Risk perceptions among participants undergoing lung cancer screening: baseline results from the National Lung Screening Trial. Ann Behav Med 37:268–279 Leone FT, Evers-Casey S, Toll BA et al (2013) Treatment of tobacco use in lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143(5 Suppl):e61S–e77S Brain K, Carter B, Lifford KJ et al (2017) Impact of low-dose CT screening on smoking cessation among high-risk participants in the UK Lung Cancer screening trial. Thorax 72:912–918 Pineiro B, Simmons VN, Palmer AM et al (2016) Smoking cessation interventions within the context of low-dose computed tomography lung cancer screening: a systematic review. Lung Cancer 98:91–98 van der Aalst CM, van Klaveren RJ, van den Bergh KA et al (2011) The impact of a lung cancer computed tomography screening result on smoking abstinence. Eur Respir J 37:1466–1473 Park ER, Gareen IF, Japuntich S et al (2015) Primary care provider-delivered smoking cessation interventions and smoking cessation among participants in the National Lung Screening Trial. JAMA Intern Med 175:1509–1516 Tanner NT, Kanodra NM, Gebregziabher M et al (2016) The association between smoking abstinence and mortality in the National Lung Screening Trial. Am J Respir Crit Care Med 193:534–541 Treating tobacco use and dependence: 2008 update. U.S. Public Health Service Clinical Practice Guideline executive summary. Respir Care 53:1217–1222 Bach PB, Mirkin JN, Oliver TK et al (2012) Benefits and harms of CT screening for lung cancer: a systematic review. JAMA 307:2418–2429 Huber A, Landau J, Ebner L et al (2016) Performance of ultralow-dose CT with iterative reconstruction in lung cancer screening: limiting radiation exposure to the equivalent of conventional chest X-ray imaging. Eur Radiol 26:3643–3652 Hassani C, Ronco A, Prosper AE et al (2018) Forward-projected model-based iterative reconstruction in screening low-dose chest CT: comparison with adaptive iterative dose reduction 3D. AJR Am J Roentgenol 211:548–556 Callister ME, Baldwin DR, Akram AR et al (2015) British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax 70(Suppl. 2):ii1–ii54 MacMahon H, Naidich DP, Goo JM et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology 284:228–243 Travis WD, Brambilla E, Noguchi M et al (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285 Infante M (2015) A conservative approach for subsolid lung nodules: is it safe enough? Eur Respir J 45:592–595 Silva M, Prokop M, Jacobs C et al (2018) Long-term active surveillance of screening detected subsolid nodules is a safe strategy to reduce overtreatment. J Thorac Oncol 13:1454–1463 Infante M, Cavuto S, Lutman FR et al (2009) A randomized study of lung cancer screening with spiral computed tomography: three-year results from the DANTE trial. Am J Respir Crit Care Med 180:445–453 Pastorino U, Rossi M, Rosato V et al (2012) Annual or biennial CT screening versus observation in heavy smokers: 5-year results of the MILD trial. Eur J Cancer Prev 21:308–315 Pedersen JH, Ashraf H, Dirksen A et al (2009) The Danish randomized lung cancer CT screening trial—overall design and results of the prevalence round. J Thorac Oncol 4:608–614 Zhao Y, de Bock GH, Vliegenthart R et al (2012) Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume. Eur Radiol 22:2076–2084 Silva M, Schaefer-Prokop CM, Jacobs C et al (2018) Detection of subsolid nodules in lung cancer screening: complementary sensitivity of visual reading and computer-aided diagnosis. Investig Radiol 53:441–449 Liang M, Tang W, Xu DM et al (2016) Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers. Radiology 281:279–288 Setio AAA, Traverso A, de Bel T et al (2017) Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med Image Anal 42:1–13 Ciompi F, Chung K, van Riel SJ et al (2017) Corrigendum: towards automatic pulmonary nodule management in lung cancer screening with deep learning. Sci Rep 7:46878 Ardila D, Kiraly AP, Bharadwaj S et al (2019) End-to-end lung cancer screening with three-dmensional deep learning on low-dose chest computed tomography. Nat Med 25:954–961 Pinsky PF, Gierada DS, Nath PH et al (2017) Lung cancer risk associated with new solid nodules in the National Lung Screening Trial. AJR Am J Roentgenol 209:1009–1014 McWilliams A, Tammemagi MC, Mayo JR et al (2013) Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 369:910–919 Mets OM, Chung K, Scholten ET et al (2018) Incidental perifissural nodules on routine chest computed tomography: lung cancer or not? Eur Radiol 28:1095–1101 Barnett J, Pulzato I, Wilson R et al (2019) Perinodular vascularity distinguishes benign intrapulmonary lymph nodes from lung cancer on computed tomography. J Thorac Imaging 34:326–328 Rampinelli C, Calloni SF, Minotti M et al (2016) Spectrum of early lung cancer presentation in low-dose screening CT: a pictorial review. Insights Imaging 7:449–459 Scholten ET, Horeweg N, de Koning HJ et al (2015) Computed tomographic characteristics of interval and post screen carcinomas in lung cancer screening. Eur Radiol 25:81–88 Lung CT Screening Reporting And Data System (Lung-RADS). American College of Radiology. www.acr.org/Quality-Safety/Resources/LungRADS. Accessed Aug 2019 Pinsky PF, Gierada DS, Black W et al (2015) Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment. Ann Intern Med 162:485–491 International Early Lung Cancer Action Program: Screening Protocol. www.ielcap.org/protocols. Accessed May 2019 Revel MP, Bissery A, Bienvenu M et al (2004) Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 231:453–458 Xu DM, Gietema H, de Koning H et al (2006) Nodule management protocol of the NELSON randomised lung cancer screening trial. Lung Cancer 54:177–184 Oudkerk M, Devaraj A, Vliegenthart R et al (2017) European position statement on lung cancer screening. Lancet Oncol 18:e754–e766 Walter JE, Heuvelmans MA, de Jong PA et al (2016) Occurrence and lung cancer probability of new solid nodules at incidence screening with low-dose CT: analysis of data from the randomised, controlled NELSON trial. Lancet Oncol 17:907–916. https://doi.org/10.1016/S1470-2045(16)30069-9 Schabath MB, Massion PP, Thompson ZJ et al (2016) Differences in patient outcomes of prevalence, interval, and screen-detected lung cancers in the CT arm of the National Lung Screening Trial. PLoS One 11:e0159880 Heuvelmans MA, Walter JE, Oudkerk M (2018) Management of baseline and new sub-solid nodules in CT lung cancer screening. Expert Rev Respir Med 12:1–3 Brodersen J, Schwartz LM, Woloshin S (2014) Overdiagnosis: how cancer screening can turn indolent pathology into illness. APMIS 122:683–689 Esserman LJ, Thompson IM Jr, Reid B (2013) Overdiagnosis and overtreatment in cancer: an opportunity for improvement. JAMA 310:797–798 Brodersen J, Schwartz LM, Heneghan C et al (2018) Overdiagnosis: what it is and what it isn’t. BMJ Evid Based Med 23:1–3 Heleno B, Siersma V, Brodersen J (2018) Estimation of overdiagnosis of lung cancer in low-dose computed tomography screening. JAMA Intern Med 178:1420–1422 Patz EF Jr, Pinsky P, Gatsonis C et al (2014) Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern Med 174:269–274 Paci E, Puliti D, Lopes Pegna A et al (2017) Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax 72:825–831 Heleno B, Siersma V, Brodersen J (2018) Estimation of overdiagnosis of lung cancer in low-dose computed tomography screening: a secondary analysis of the Danish Lung Cancer screening trial. JAMA Intern Med 178:1420–1422 Silva M, Sverzellati N, Manna C et al (2012) Long-term surveillance of ground-glass nodules: evidence from the MILD trial. J Thorac Oncol 7:1541–1546 Scholten ET, de Jong PA, de Hoop B et al (2015) Towards a close computed tomography monitoring approach for screen detected subsolid pulmonary nodules? Eur Respir J 45:765–773 Yip R, Wolf A, Tam K et al (2016) Outcomes of lung cancers manifesting as nonsolid nodules. Lung Cancer 97:35–42 Yip R, Li K, Liu L et al (2018) Controversies on lung cancers manifesting as part-solid nodules. Eur Radiol 28:747–759 Katki HA, Kovalchik SA, Berg CD et al (2016) Development and validation of risk models to select ever-smokers for CT lung cancer screening. JAMA 315:2300–2311 Revel MP (2013) Avoiding overdiagnosis in lung cancer screening: the volume doubling time strategy. Eur Respir J 42:1459–1463 Sverzellati N, Silva M, Calareso G et al (2016) Low-dose computed tomography for lung cancer screening: comparison of performance between annual and biennial screen. Eur Radiol 26:3821–3829 Brodersen J, McKenna SP, Doward LC et al (2007) Measuring the psychosocial consequences of screening. Health Qual Life Outcomes 5:3 Mokkink LB, de Vet HCW, Prinsen CAC et al (2018) COSMIN risk of bias checklist for systematic reviews of patient-reported outcome measures. Qual Life Res 27:1171–1179 DeFrank JT, Barclay C, Sheridan S et al (2014) The psychological harms of screening: the evidence we have versus the evidence we need. J Gen Intern Med 30:242–248 Hestbech MS, Siersma V, Dirksen A et al (2011) Participation bias in a randomised trial of screening for lung cancer. Lung Cancer 73:325–331 Brodersen J, Thorsen H, Kreiner S (2010) Consequences of screening in lung cancer: development and dimensionality of a questionnaire. Value Health 13:601–612 Aggestrup LM, Hestbech MS, Siersma V et al (2012) Psychosocial consequences of allocation to lung cancer screening – a randomised controlled trial. BMJ Open 2:e000663 Rasmussen JF, Siersma V, Pedersen JH et al (2015) Psychosocial consequences in the Danish randomised controlled lung cancer screening trial (DLCST). Lung Cancer 87:65–72 Pompe E, de Jong PA, Lynch D et al (2017) Computed tomographic findings in subjects who died from respiratory disease in the NLST. Eur Respir J 49:1601814 Tockman MS, Anthonisen NR, Wright EC et al (1987) Airways obstruction and the risk for lung cancer. Ann Intern Med 106:512–518 Jairam PM, van der Graaf Y, Lammers JW et al (2015) Incidental findings on chest CT imaging are associated with increased COPD exacerbations and mortality. Thorax 70:725–731 Shemesh J (2016) Coronary artery calcification in clinical practice: what we have learned and why should it routinely be reported on chest CT? Ann Transl Med 4:159 Messerli M, Hechelhammer L, Leschka S et al (2018) Coronary risk assessment at X-ray dose equivalent ungated chest CT: esults of a multi-reader study. Clin Imaging 49:73–79 Wong PK, Christie JJ, Wark JD (2007) The effects of smoking on bone health. Clin Sci 113:233–241 Buckens CF, van der Graaf Y, Verkooijen HM et al (2015) Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality. Eur Radiol 25:132–139 Morgan L, Choi H, Reid M et al (2017) Frequency of incidental findings and subsequent evaluation in low-dose computed tomographic scans for lung cancer screening. Ann Am Thorac Soc 14:1450–1456 Chung JH, Richards JC, Koelsch TL et al (2018) Screening for lung cancer: incidental pulmonary parenchymal findings. AJR Am J Roentgenol 210:503–513 Reiter MJ, Nemesure A, Madu E et al (2018) Frequency and distribution of incidental findings deemed appropriate for S modifier designation on low-dose CT in a lung cancer screening program. Lung Cancer 120:1–6 Nguyen XV, Davies L, Eastwood JD et al (2017) Extrapulmonary findings and malignancies in participants screened with chest CT in the national Lung screening trial. J Am Coll Radiol 14:324–330 O’Sullivan JW, Muntinga T, Grigg S et al (2018) Prevalence and outcomes of incidental imaging findings: umbrella review. BMJ 361:k2387 Munden RF, Carter BW, Chiles C et al (2018) Managing incidental findings on thoracic CT: mediastinal and cardiovascular findings. A white paper of the ACR incidental findings committee. J Am Coll Radiol 15:1087–1096 Mayo-Smith WW, Song JH, Boland GL et al (2017) Management of incidental adrenal masses: a white paper of the ACR incidental findings committee. J Am Coll Radiol 14:1038–1044 Gore RM, Pickhardt PJ, Mortele KJ et al (2017) Management of incidental liver lesions on CT: a white paper of the ACR incidental findings committee. J Am Coll Radiol 14:1429–1437 Megibow AJ, Baker ME, Morgan DE et al (2017) Management of incidental pancreatic cysts: a white paper of the ACR incidental findings committee. J Am Coll Radiol 14:911–923 Herts BR, Silverman SG, Hindman NM et al (2018) Management of the incidental renal mass on CT: a white paper of the ACR incidental findings committee. J Am Coll Radiol 15:264–273 Levy B, Hu ZI, Cordova KN et al (2016) Clinical utility of liquid diagnostic platforms in non-small cell lung cancer. Oncologist 21:1121–1130 Mamdani H, Ahmed S, Armstrong S et al (2017) Blood-based tumor biomarkers in lung cancer for detection and treatment. Transl Lung Cancer Res 6:648–660 Nardi-Agmon I, Peled N (2017) Exhaled breath analysis for the early detection of lung cancer: recent developments and future prospects. Lung Cancer (Auckl) 8:31–38 Arneth B (2018) Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer 18:527 Shoshan-Barmatz V, Bishitz Y, Paul A et al (2017) A molecular signature of lung cancer: potential biomarkers for adenocarcinoma and squamous cell carcinoma. Oncotarget 8:105492–105509 van de Goor R, van Hooren M, Dingemans AM et al (2018) Training and validating a portable electronic nose for lung cancer screening. J Thorac Oncol 13:676–681 Sozzi G, Roz L, Conte D et al (2009) Plasma DNA quantification in lung cancer computed tomography screening: five-year results of a prospective study. Am J Respir Crit Care Med 179:69–74 Newman AM, Bratman SV, To J et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20:548–554 Sozzi G, Boeri M, Rossi M et al (2014) Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 32:768–773 Plasma microRNA Profiling as First Line Screening Test for Lung Cancer Detection: a Prospective Study (bioMILD). https://clinicaltrials.gov/ct2/show/study/NCT02247453. 2014. Accessed May 2019 Montani F, Marzi MJ, Dezi F et al (2015) miR-Test: a blood test for lung cancer early detection. J Natl Cancer Inst 107:djv063 World Health Organization Global Status Report on Noncommunicable Diseases (2014) Geneva, World Health Organization, 2014 Bleichrodt H, Quiggin J (1999) Life-cycle preferences over consumption and health: when is cost-effectiveness analysis equivalent to cost-benefit analysis? J Health Econ 18:681–708 Black WC (1990) The CE plane: a graphic representation of cost-effectiveness. Med Decis Mak 10:212–214 Maciosek MV, Coffield AB, Edwards NM et al (2006) Priorities among effective clinical preventive services: results of a systematic review and analysis. Am J Prev Med 31:52–61 Cressman S, Peacock SJ, Tammemagi MC et al (2017) The cost-effectiveness of high-risk lung cancer screening and drivers of program efficiency. J Thorac Oncol 12:1210–1222 Tomonaga Y, Ten Haaf K, Frauenfelder T et al (2018) Cost-effectiveness of low-dose CT screening for lung cancer in a European country with high prevalence of smoking–a modelling study. Lung Cancer 121:61–69 Hofer F, Kauczor HU, Stargardt T (2018) Cost-utility analysis of a potential lung cancer screening program for a high-risk population in Germany: a modelling approach. Lung Cancer 124:189–198 Ten Haaf K, Tammemagi MC, Bondy SJ et al (2017) Performance and cost-effectiveness of computed tomography lung cancer screening scenarios in a population-based setting: a microsimulation modeling analysis in Ontario, Canada. PLoS Med 14:e1002225 McMahon PM, Kong CY, Bouzan C et al (2011) Cost-effectiveness of computed tomography screening for lung cancer in the United States. J Thorac Oncol 6:1841–1848 Veronesi GGS, Vanni E, Dieci E et al (2018) Analysis indicates low incremental cost-effectiveness ratio for implementation of lung cancer screening in Italy. J Thorac Oncol 13:S968 Kumar V, Cohen JT, van Klaveren D et al (2018) Risk-targeted lung cancer screening: a cost-effectiveness analysis. Ann Intern Med 168:161–169 Mehta HJ, Mohammed TL, Jantz MA (2017) The American College of Radiology Lung Imaging Reporting and Data System: potential drawbacks and need for revision. Chest 151:539–543 Cassidy A, Myles JP, van Tongeren M et al (2008) The LLP risk model: an individual risk prediction model for lung cancer. Br J Cancer 98:270–276 Field JK, Duffy SW, Baldwin DR et al (2016) The UK Lung Cancer screening trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer. Health Technol Assess 20:1–146 Horeweg N, Scholten ET, de Jong PA et al (2014) Detection of lung cancer through low-dose CT screening (NELSON): a prespecified analysis of screening test performance and interval cancers. Lancet Oncol 15:1342–1350 Lopes Pegna A, Picozzi G, Falaschi F et al (2013) Four-year results of low-dose CT screening and nodule management in the ITALUNG trial. J Thorac Oncol 8:866–875 Saghir Z, Dirksen A, Ashraf H et al (2012) CT screening for lung cancer brings forward early disease. The randomised Danish Lung Cancer screening trial: status after five annual screening rounds with low-dose CT. Thorax 67:296–301 Field JK, Duffy SW, Baldwin DR et al (2016) UK Lung Cancer RCT pilot screening trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening. Thorax 71:161–170 Infante M, Cavuto S, Lutman FR et al (2015) Long-term follow-up results of the DANTE trial, a randomized study of lung cancer screening with spiral computed tomography. Am J Respir Crit Care Med 191:1166–1175