Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

Analytica Chimica Acta - Tập 954 - Trang 88-96 - 2017
Jacqueline Marques Petroni1, Bruno Gabriel Lucca2, Valdir Souza Ferreira1
1Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil
2Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, São Mateus, ES, 29932-540, Brazil

Tài liệu tham khảo

Saylor, 2015, A review of microdialysis coupled to microchip electrophoresis for monitoring biological events, J. Chromatogr. A, 1382, 48, 10.1016/j.chroma.2014.12.086 Chen, 2015, Fabrication of a totally renewable off-channel amperometric platform for microchip electrophoresis, Anal. Chim. Acta, 874, 33, 10.1016/j.aca.2015.02.035 Martín, 2012, Food analysis on microchip electrophoresis: an updated review, Electrophoresis, 33, 2212, 10.1002/elps.201200049 Ho, 2015, 3D printed microfluidics for biological applications, Lab. Chip, 15, 3627, 10.1039/C5LC00685F Shang, 2012, Recent advances in miniaturisation – the role of microchip electrophoresis in clinical analysis, Electrophoresis, 33, 105, 10.1002/elps.201100454 Jang, 2011, State-of-the-art lab chip sensors for environmental water monitoring, Meas. Sci. Technol., 22, 1, 10.1088/0957-0233/22/3/032001 Pumera, 2008, Trends in analysis of explosives by microchip electrophoresis and conventional CE, Electrophoresis, 29, 269, 10.1002/elps.200700394 Temiz, 2015, Lab-on-a-chip devices: how to close and plug the lab?, Microelectron. Eng., 132, 156, 10.1016/j.mee.2014.10.013 Pozo-Ayuso, 2008, Fabrication and evaluation of single- and dual-channel (Π-design) microchip electrophoresis with electrochemical detection, J. Chromatogr. A, 1180, 193, 10.1016/j.chroma.2007.12.023 Lucca, 2015, Electrodeposition of reduced graphene oxide on a Pt electrode and its use as amperometric sensor in microchip electrophoresis, Electrophoresis, 36, 1886, 10.1002/elps.201500092 Lee, 2004, Microchip capillary electrophoresis with amperometric detection for several carbohydrates, Talanta, 64, 210, 10.1016/j.talanta.2004.02.013 Regel, 2013, Integration of a graphite/poly(methyl-methacrylate) composite electrode into a poly(methylmethacrylate) substrate for electrochemical detection in microchips, Electrophoresis, 34, 2101, 10.1002/elps.201300055 Saylor, 2015, Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway, Electrophoresis, 36, 1912, 10.1002/elps.201500150 Baldwin, 2002, Fully integrated on-chip electrochemical detection for capillary electrophoresis in a microfabricated device, Anal. Chem., 74, 3690, 10.1021/ac011188n Lacher, 2001, Microchip capillary electrophoresis/electrochemistry, Electrophoresis, 22, 2526, 10.1002/1522-2683(200107)22:12<2526::AID-ELPS2526>3.0.CO;2-K Gawron, 2001, Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips, Electrophoresis, 22, 242, 10.1002/1522-2683(200101)22:2<242::AID-ELPS242>3.0.CO;2-W Xu, 2007, Carbon nanotube/polystyrene composite electrode for microchip electrophoretic determination of rutin and quercetin in Flos Sophorae Immaturus, Talanta, 73, 932, 10.1016/j.talanta.2007.05.019 Martín, 2015, Multidimensional carbon allotropes as electrochemical detectors in capillary and microchip electrophoresis, Electrophoresis, 36, 179, 10.1002/elps.201400328 Afonso, 2016, Simple and rapid fabrication of disposable carbon-based electrochemical cells using an electronic craft cutter for sensor and biosensor applications, Talanta, 146, 381, 10.1016/j.talanta.2015.09.002 Hyun, 2015, High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics, Adv. Mater., 27, 109, 10.1002/adma.201404133 Pellitero, 2016, Rapid prototyping of electrochemical lateral flow devices: stencilled electrodes, Analyst, 141, 2515, 10.1039/C5AN02424B Wang, 2004, Microchip capillary electrophoresis with electrochemical detection of thiol-containing degradation products of v-type nerve agents, Anal. Chem., 76, 4721, 10.1021/ac049658b Wang, 1999, Micromachined electrophoresis chips with thick-film electrochemical detectors, Anal. Chem., 71, 5436, 10.1021/ac990807d Wang, 2002, Thick-film electrochemical detectors for poly(dimethylsiloxane)-based microchip capillary electrophoresis, Electroanalysis, 14, 1251, 10.1002/1521-4109(200210)14:18<1251::AID-ELAN1251>3.0.CO;2-G Wang, 2002, Towards disposable lab-on-a-chip: poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection, Electrophoresis, 23, 596, 10.1002/1522-2683(200202)23:4<596::AID-ELPS596>3.0.CO;2-C Kovarik, 2004, Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses, Analyst, 129, 400, 10.1039/b401380h Kuhnline, 2006, Detecting thiols in a microchip device using micromolded carbon ink electrodes modified with cobalt phthalocyanine, Analyst, 131, 202, 10.1039/B511153F Kovarik, 2005, Integration of a carbon microelectrode with a microfabricated palladium decoupler for use in microchip capillary electrophoresis/electrochemistry, Electrophoresis, 26, 202, 10.1002/elps.200406188 Mecker, 2006, Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis, Electrophoresis, 27, 5032, 10.1002/elps.200600401 Zhu, 2009, Electrochemical determination of nitrite based on poly(amidoamine) dendrimer-modified carbon nanotubes for nitrite oxidation, Electrochem. Commun., 11, 2308, 10.1016/j.elecom.2009.10.018 Mehmeti, 2016, The use of graphene nanoribbons as efficient electrochemical sensing material for nitrite determination, Talanta, 159, 34, 10.1016/j.talanta.2016.05.079 Stankovic, 2016, Determination of nitrite in tap water: a comparative study between cerium, titanium and selenium dioxide doped reduced graphene oxide modified glassy carbon electrodes, Sens. Actuators B Chem., 236, 311, 10.1016/j.snb.2016.06.018 Shariati-Rad, 2015, Spectrophotometric determination of nitrite in soil and water using cefixime and central composite design, Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 190, 10.1016/j.saa.2015.04.083 Gunasekara, 2011, In-channel amperometric detection for microchip electrophoresis using a wireless isolated potentiostat, Electrophoresis, 32, 832, 10.1002/elps.201000681 Meneses, 2015, Evaluation of in-channel amperometric detection using a dual-channel microchip electrophoresis device and a two-electrode potentiostat for reverse polarity separations, Electrophoresis, 36, 441, 10.1002/elps.201400297 Martin, 2000, Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips, Anal. Chem., 72, 3196, 10.1021/ac000160t Ourari, 2015, Elaboration of new electrodes with carbon paste containing polystyrene functionalized by pentadentate nickel(II)-Schiff base complex – application to the electrooxidation reaction of methanol and its aliphatic analogs, Electrochim. Acta, 170, 311, 10.1016/j.electacta.2015.02.154 Wang, 2009, Effects of heterogeneous electron-transfer rate on the resolution of electrophoretic separations based on microfluidics with end-column electrochemical detection, Electrophoresis, 30, 3334, 10.1002/elps.200800845 Lu, 2011, Polystyrene/graphene composite electrode fabricated by in situ polymerization for capillary electrophoretic determination of bioactive constituents in Herba Houttuyniae, Electrophoresis, 32, 1906, 10.1002/elps.201100162 Tang, 2013, Graphene-epoxy composite electrode fabricated by in situ polycondensation for enhanced amperometric detection in capillary electrophoresis, J. Chromatogr. A, 1316, 127, 10.1016/j.chroma.2013.09.077 Huang, 2008, Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon, Biosens. Bioelectron., 24, 632, 10.1016/j.bios.2008.06.011 Fernández-la-Villa, 2013, Fast and reliable urine analysis using a portable platform based on microfluidic electrophoresis chips with electrochemical detection, Anal. Methods, 5, 1494, 10.1039/c2ay26166a Wang, 2004, Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector, Anal. Chem., 76, 298, 10.1021/ac035130f