Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy
Tóm tắt
Most information on the dose-response of radiation-induced cancer is derived from data on the A-bomb survivors. Since, for radiation protection purposes, the dose span of main interest is between zero and one Gy, the analysis of the A-bomb survivors is usually focused on this range. However, estimates of cancer risk for doses larger than one Gy are becoming more important for radiotherapy patients. Therefore in this work, emphasis is placed on doses relevant for radiotherapy with respect to radiation induced solid cancer. For various organs and tissues the analysis of cancer induction was extended by an attempted combination of the linear-no-threshold model from the A-bomb survivors in the low dose range and the cancer risk data of patients receiving radiotherapy for Hodgkin's disease in the high dose range. The data were fitted using organ equivalent dose (OED) calculated for a group of different dose-response models including a linear model, a model including fractionation, a bell-shaped model and a plateau-dose-response relationship. The quality of the applied fits shows that the linear model fits best colon, cervix and skin. All other organs are best fitted by the model including fractionation indicating that the repopulation/repair ability of tissue is neither 0 nor 100% but somewhere in between. Bone and soft tissue sarcoma were fitted well by all the models. In the low dose range beyond 1 Gy sarcoma risk is negligible. For increasing dose, sarcoma risk increases rapidly and reaches a plateau at around 30 Gy. In this work OED for various organs was calculated for a linear, a bell-shaped, a plateau and a mixture between a bell-shaped and plateau dose-response relationship for typical treatment plans of Hodgkin's disease patients. The model parameters (α and R) were obtained by a fit of the dose-response relationships to these OED data and to the A-bomb survivors. For any three-dimensional inhomogenous dose distribution, cancer risk can be compared by computing OED using the coefficients obtained in this work.
Tài liệu tham khảo
Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, Mabuchi K, Kodama K: Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiat Res. 2007, 168 (1): 1-64. 10.1667/RR0763.1.
Preston DL, Pierce DA, Shimizu Y, Cullings HM, Fujita S, Funamoto S, Kodama K: Effects of recent changes in Atomic bomb survivor dosimetry on cancer mortality risk estimated. Radiat Res. 2004, 162: 377-389. 10.1667/RR3232.
Walsh L, Rühm W, Kellerer AM: Cancer risk estimates for X-rays with regard to organ specific doses, part I: All solid cancers combined. Radiat Environ Biophys. 2004, 43: 145-151. 10.1007/s00411-004-0248-5.
Walsh L, Rühm W, Kellerer AM: Cancer risk estimates for γ-rays with regard to organ specific doses, part II: Site specific solid cancers. Radiat Environ Biophys. 2004, 43: 225-231. 10.1007/s00411-004-0263-6.
Lindsay KA, Wheldon EG, Deehan C, Wheldon TE: Radiation carcinogenesis modelling for risk of treatment-related second tumours following radiotherapy. Br J Radiol. 2001, 74 (882): 529-36.
Hall EJ, Wuu CS: Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys. 2003, 56 (1): 83-8. 10.1016/S0360-3016(03)00073-7.
Davis RH: Production and killing of second cancer precursor cells in radiation therapy: in regard to Hall and Wuu (Int J Radiat Oncol Biol Phys 2003;56:83-88). Int J Radiat Oncol Biol Phys. 2004, 59 (3): 916-10.1016/j.ijrobp.2003.09.076. and author reply Int J Radiat Oncol Biol Phys. 2005 Jan 1;61(1):312-3
Schneider U, Besserer J, Mack A: Hypofractionated radiotherapy has the potential for second cancer reduction. Theor Biol Med Model. 2010, 7: 4-10.1186/1742-4682-7-4.
Dasu A, Toma-Dasu I: Dose-effect models for risk-relationship to cell survival parameters. Acta Oncol. 2005, 44 (8): 829-35. 10.1080/02841860500401159.
Dasu A, Toma-Dasu I, Olofsson J, Karlsson M: The use of risk estimation models for the induction of secondary cancers following radiotherapy. Acta Oncol. 2005, 44 (4): 339-47. 10.1080/02841860510029833.
Schneider U, Zwahlen D, Ross D, Kaser-Hotz B: Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 2005, 61 (5): 1510-5. 10.1016/j.ijrobp.2004.12.040.
Schneider U, Kaser-Hotz B: A simple dose-response relationship for modeling secondary cancer incidence after radiotherapy. Z Med Phys. 2005, 15 (1): 31-7.
Sachs RK, Brenner DJ: Solid tumor risks after high doses of ionizing radiation. Proc Natl Acad Sci USA. 2005, 102 (37): 13040-5. 10.1073/pnas.0506648102.
Schneider U, Kaser-Hotz B: Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Radiat Environ Biophys. 2005, 44 (3): 235-9. 10.1007/s00411-005-0016-1.
Pfaffenberger A, Schneider U, Poppe B, Oelfke U: Phenomenological modelling of second cancer incidence for radiation treatment planning. Z Med Phys. 2009, 19 (4): 236-50.
Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ: A new view of radiation-induced cancer: integrating short- and long-term processes. Part I: approach. Radiat Environ Biophys. 2009, 48 (3): 263-74. 10.1007/s00411-009-0230-3.
Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ: A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation. Radiat Environ Biophys. 2009, 48 (3): 275-86. 10.1007/s00411-009-0231-2.
Schneider U, Walsh L: Cancer risk estimates from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Radiat Environ Biophys. 2008, 47 (2): 253-63. 10.1007/s00411-007-0151-y.
The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007, 37 (2-4): 1-332.
UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation (2006) Effects of ionizing radiation. UNSCEAR. 2006, United Nations, New York, Report to the General Assembly, with Scientific Annex
Schneider U: Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009, 36 (4): 1138-43. 10.1118/1.3089792.
Dores GM, Metayer C, Curtis RE, Lynch CF, Clarke EA, Glimelius B, Storm H, Pukkala E, van Leeuwen FE, Holowaty EJ, Andersson M, Wiklund T, Joensuu T, van't Veer MB, Stovall M, Gospodarowicz M, Travis LB: Second malignant neoplasms among long-term survivors of Hodgkin's disease: a population-based evaluation over 25 years. J Clin Oncol. 2002, 20 (16): 3484-94. 10.1200/JCO.2002.09.038.
Schneider U, Sumila M, Robotka J, Gruber G, Mack A, Besserer J: Dose-response relationship for breast cancer induction at radiotherapy dose. Radiat Oncol. 2011, 6 (1): 67-10.1186/1748-717X-6-67.
Carmel RJ, Kaplan HS: Mantle irradiation in Hodgkin's disease. An analysis of technique, tumor eradication, and complications. Cancer. 1976, 37 (6): 2813-25. 10.1002/1097-0142(197606)37:6<2813::AID-CNCR2820370637>3.0.CO;2-S.
Hoppe RT: Radiation therapy in the management of Hodgkin's disease. Semin Oncol. 1990, 704-15. 6
Mauch PM, Kalish LA, Kadin M, Coleman CN, Osteen R, Hellman S: Patterns of presentation of Hodgkin disease. Implications for etiology and pathogenesis. Cancer. 1993, 71 (6): 2062-71. 10.1002/1097-0142(19930315)71:6<2062::AID-CNCR2820710622>3.0.CO;2-0.
Schneider U, Stipper A, Besserer J: Dose-response relationship for lung cancer induction at radiotherapy dose. Z Med Phys. 2010, 20 (3): 206-14.
Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM, Taylor CR, Hamilton AS, Deapen DM, Rappaport EB: Concordance for Hodgkin's disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995, 332 (7): 413-8. 10.1056/NEJM199502163320701.
Sasaki MS, Nomura T, Ejima Y, Utsumi H, Endo S, Saito I, Itoh T, Hoshi M: Experimental derivation of relative biological effectiveness of A-bomb neutrons in Hiroshima and Nagasaki and implications for risk assessment. Radiat Res. 2008, 170 (1): 101-17. 10.1667/RR1249.1.