Positive solutions for a class of non-cooperative pq-Laplacian systems with singularities

Applied Mathematics Letters - Tập 85 - Trang 103-109 - 2018
K. D. Chu1, D. D. Hai2, R. Shivaji3
1Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
2Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS 39762, USA
3Department of Mathematics and Statistics, University of North Carolina at Greensboro, Greensboro, NC 27402, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, 2005, On positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Anal., 62, 751, 10.1016/j.na.2005.04.007

Hai, 2004, An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal., 56, 1007, 10.1016/j.na.2003.10.024

Lee, 2009, Classes of infinite semipositone systems, Proc. Roy. Soc. Edinburgh, 139A, 853, 10.1017/S0308210508000255

Rodrigues, 2013, Positive solutions for classes of positone/semipositone sytem with multiparameters, Electron. J. Diff. Eqns., 2013, 1

Hai, 2015, A comparison principle and applications to asymptotically p-linear boundary value problems, Osaka J. Math., 52, 393

Lieberman, 1988, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12, 1203, 10.1016/0362-546X(88)90053-3

Vazquez, 1984, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12, 191, 10.1007/BF01449041

Hai, 2011, On a class of singular p-Laplacian boundary value problems, J. Math. Anal. Appl., 383, 619, 10.1016/j.jmaa.2011.05.060

Lazer, 1991, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc., 111, 721, 10.1090/S0002-9939-1991-1037213-9

Sakaguchi, 1987, Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola Norm. Sup. pisa Cl. Sci., 14, 403