Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media

Transport in Porous Media - Tập 32 Số 3 - Trang 239-262 - 1998
Ghanem, R.1, Dham, S.1
1Department of Civil Engineering, The Johns Hopkins University, Baltimore, U.S.A.

Tóm tắt

This study is concerned with developing a two-dimensional multiphase model that simulates the movement of NAPL in heterogeneous aquifers. Heterogeneity is dealt with in a probabilistic sense by modeling the intrinsic permeability of the porous medium as a stochastic process. The deterministic finite element method is used to spatially discretize the multiphase flow equations. The intrinsic permeability is represented in the model via its Karhunen–Loeve expansion. This is a computationally expedient representation of stochastic processes by means of a discrete set of random variables. Further, the nodal unknowns, water phase saturations and water phase pressures, are represented by their stochastic spectral expansions. This representation involves an orthogonal basis in the space of random variables. The basis consists of orthogonal polynomial chaoses of consecutive orders. The relative permeabilities of water and oil phases, and the capillary pressure are expanded in the same manner, as well. For these variables, the set of deterministic coefficients multiplying the basis in their expansions is evaluated based on constitutive relationships expressing the relative permeabilities and the capillary pressure as functions of the water phase saturations. The implementation of the various expansions into the multiphase flow equations results in the formulation of discretized stochastic differential equations that can be solved for the deterministic coefficients appearing in the expansions representing the unknowns. This method allows the computation of the probability distribution functions of the unknowns for any point in the spatial domain of the problem at any instant in time. The spectral formulation of the stochastic finite element method used herein has received wide acceptance as a comprehensive framework for problems involving random media. This paper provides the application of this formalism to the problem of two-phase flow in a random porous medium.

Từ khóa


Tài liệu tham khảo

Adler, P. M.: Transport in materials with fractal microstructure, in: J. P. Lamb (ed), Proc. 10th U.S. National Congress of Applied Mechanics, ASME, 1986, pp. 141–143.

citation_title=Multiphase Flow in Porous Media; citation_publication_date=1998; citation_id=CR2; citation_author=M. B. Allen; citation_author=G. A. Behie; citation_author=J. A. Trangenstein; citation_publisher=Springer-Verlag

citation_title=Three-phase relative permeability of water-wet, intermediate-wet and oil-wet sandstone; citation_inbook_title=New Developments in Improved Oil Recovery; citation_publication_date=1995; citation_pages=51-60; citation_id=CR3; citation_author=L. E. Baker; citation_publisher=The Geological Society

Bear, J.: 1972, Dynamics of Fluids in Porous Media, Dover.

citation_journal_title=Ann. Math.; citation_title=The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals; citation_author=R. H. Cameron, W. T. Martin; citation_volume=48; citation_publication_date=1947; citation_pages=385-392; citation_id=CR5

citation_title=Mathematical Models and Finite Elements for Reservoir Simulation; citation_publication_date=1986; citation_id=CR6; citation_author=G. Chavent; citation_author=J. Jaffre; citation_publisher=North-Holland

citation_journal_title=Water Resour. Res.; citation_title=On unifying the concepts of scale, instrumentation, and stochastics in the development of multiphase transport theory; citation_author=J. H. Cushman; citation_volume=20; citation_issue=11; citation_publication_date=1984; citation_pages=1668-1676; citation_id=CR7

citation_title=Stochastic Finite Elements: A Spectral Approach; citation_publication_date=1991; citation_id=CR8; citation_author=R. Ghanem; citation_author=P. Spanos; citation_publisher=Springer Verlag

citation_journal_title=Computer Meth. Appl. Mech. Engng.; citation_title=Numerical solution of spectral stochastic finite element systems; citation_author=R. Ghanem, R. Kruger; citation_volume=129; citation_publication_date=1996; citation_pages=289-303; citation_id=CR9

citation_journal_title=ASCE J. Engng. Mech.; citation_title=Stochastic finite element analysis for randomly layered media; citation_author=R. Ghanem, V. Brzkala; citation_volume=122; citation_issue=4; citation_publication_date=1996; citation_pages=361-369; citation_id=CR10

Ghanem, R.: 1997, Hybrid stochastic finite elements: coupling of spectral expansions with Monte Carlo simulations, J. Appl. Mech. (to appear).

Ghanem, R.: The nonlinear Gaussian spectrum of log-normal stochastic processes and variables, ASME J. Appl. Mech. (submitted for review).

citation_title=A front tracking reservoir simulator, five-spot validation studies and the water coning problem; citation_inbook_title=The Mathematics of Reservoir Simulation; citation_publication_date=1983; citation_id=CR13; citation_author=J. Glimm; citation_author=B. Lindquist; citation_author=O. McBryan; citation_author=L. Padmanabhan; citation_publisher=SIAM

citation_title=Stochastic Filtering Theory; citation_publication_date=1980; citation_id=CR14; citation_author=G. Kallianpur; citation_publisher=Springer-Verlag

citation_journal_title=Water Resour. Res.; citation_title=Contaminant spreading in stratified soils with fractal permeability; citation_author=M. W. Kemblowski, J.-C. Wen; citation_volume=29; citation_issue=2; citation_publication_date=1993; citation_pages=419-425; citation_id=CR15

citation_journal_title=Water Resour. Res.; citation_title=Two-phase flow in heterogeneous porous-media: I. Model development; citation_author=B. H. Kueper, E. O. Frind; citation_volume=27; citation_publication_date=1991; citation_pages=1059; citation_id=CR16

Li, R. and Ghanem, R.: Adaptive polynomial chaos simulation applied to statistics of extremes in nonlinear random vibration, Probab. Engng. Mech. (to appear).

citation_title=Probability Theory; citation_publication_date=1977; citation_id=CR18; citation_author=M. Loeve; citation_publisher=Springer-Verlag

citation_title=Physical Principles of Oil Production; citation_publication_date=1949; citation_id=CR19; citation_author=M. Muskat; citation_publisher=McGraw-Hill

citation_title=Finite element and finite difference methods for continuous flows in porous media; citation_inbook_title=The Mathematics of Reservoir Simulation; citation_publication_date=1983; citation_pages=35-106; citation_id=CR20; citation_author=T. F. Russell; citation_author=M. F. Wheeler; citation_publisher=SIAM

citation_journal_title=Water Resour. Res.; citation_title=Galerkin finite element procedure for analyzing flow through random media; citation_author=B. Sagar; citation_volume=14; citation_issue=6; citation_publication_date=1997; citation_pages=1035-1044; citation_id=CR21

citation_journal_title=J. Engng. Mech. Div., ASCE; citation_title=Stochastic finite element expansion for random media; citation_author=P. D. Spanos, R. Ghanem; citation_volume=115; citation_issue=5; citation_publication_date=1989; citation_pages=1035-1053; citation_id=CR22

citation_journal_title=J. Engng. Mech. Div., ASCE; citation_title=Boundary element formulation for random vibration problems; citation_author=P. D. Spanos, R. Ghanem; citation_volume=117; citation_issue=409–423; citation_publication_date=1991; citation_pages=1035-1053; citation_id=CR23

citation_journal_title=Water Resour. Res.; citation_title=Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils; citation_author=G. Sposito, W. Jury, V. K. Gupta; citation_volume=22; citation_issue=1; citation_publication_date=1986; citation_pages=77-88; citation_id=CR24

“State-of-the-art review on computational stochastic mechanics”, prepared by the Sub-Committee on Computational Stochastic Mechanics, IASSAR, Probab. Engng. Mechanics, 1997 (to appear).

citation_journal_title=Amer. J. Math.; citation_title=The homogeneous chaos; citation_author=N. Wiener; citation_volume=60; citation_publication_date=1938; citation_pages=897-936; citation_id=CR26