The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ohsumi, Y.. 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2: 211-216.
Kirkegaard, K., M. P. Taylor, W. T. Jackson. 2004. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol. 2: 301-314.
Crotzer, V. L., J. S. Blum. 2008. Cytosol to lysosome transport of intracellular antigens during immune surveillance. Traffic 9: 10-16.
Nakagawa, I., A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi, T. Kamimoto, A. Nara, J. Funao, M. Nakata, K. Tsuda, et al 2004. Autophagy defends cells against invading group A Streptococcus. Science 306: 1037-1040.
Birmingham, C. L., A. C. Smith, M. A. Bakowski, T. Yoshimori, J. H. Brumell. 2006. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281: 11374-11383.
Mizushima, N., B. Levine, A. M. Cuervo, D. J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075.
Tsolis, R. M., R. A. Kingsley, S. M. Townsend, T. A. Ficht, L. G. Adams, A. J. Baumler. 1999. Of mice, calves, and men: comparison of the mouse typhoid model with other Salmonella infections. Adv. Exp. Med. Biol. 473: 261-274.
Meresse, S., O. Steele-Mortimer, E. Moreno, M. Desjardins, B. Finlay, J.-P. Gorvel. 1999. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat. Cell Biol. 1: E183-E188.
Seibenhener, M. L., T. Geetha, M. W. Wooten. 2007. Sequestosome 1/p62: more than just a scaffold. FEBS Lett. 581: 175-179.
Bjorkoy, G., T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, T. Johansen. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171: 603-614.
Moscat, J., M. T. Diaz-Meco, M. W. Wooten. 2007. Signal integration and diversification through the p62 scaffold protein. Trends Biochem. Sci. 32: 95-100.
Komatsu, M., S. Waguri, M. Koike, Y. S. Sou, T. Ueno, T. Hara, N. Mizushima, J. Iwata, J. Ezaki, S. Murata, et al 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-1163.
Pankiv, S., T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, T. Johansen. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282: 24131-24145.
Shvets, E., E. Fass, R. Scherz-Shouval, Z. Elazar. 2008. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 121: 2685-2695.
Ichimura, Y., T. Kumanomidou, Y.-s. Sou, T. Mizushima, J. Ezaki, T. Ueno, E. Kominami, T. Yamane, K. Tanaka, M. Komatsu. 2008. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283: 22847-22857.
Kim, P. K., D. W. Hailey, R. T. Mullen, J. Lippincott-Schwartz. 2008. Inaugural article: Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105: 20567-20574.
Birmingham, C. L., J. H. Brumell. 2006. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2: 156-158.
Steele-Mortimer, O., S. Meresse, J. P. Gorvel, B. H. Toh, B. B. Finlay. 1999. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1: 33-49.
Kuma, A., M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya, T. Yoshimori, Y. Ohsumi, T. Tokuhisa, N. Mizushima. 2004. The role of autophagy during the early neonatal starvation period. Nature 432: 1032-1036.
Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, T. Yoshimori. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19: 5720-5728.
Lamark, T., M. Perander, H. Outzen, K. Kristiansen, A. Overvatn, E. Michaelsen, G. Bjorkoy, T. Johansen. 2003. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J. Biol. Chem. 278: 34568-34581.
Slot, J. W., H. J. Geuze, S. Gigengack, G. E. Lienhard, D. E. James. 1991. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113: 123-135.
Perrin, A. J., X. Jiang, C. L. Birmingham, N. S. So, J. H. Brumell. 2004. Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr. Biol. 14: 806-811.
Ogawa, M., T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima, C. Sasakawa. 2005. Escape of intracellular Shigella from autophagy. Science 307: 727-731.
Zatloukal, K., C. Stumptner, A. Fuchsbichler, H. Heid, M. Schnoelzer, L. Kenner, R. Kleinert, M. Prinz, A. Aguzzi, H. Denk. 2002. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am. J. Pathol. 160: 255-263.
Kuusisto, E., A. Salminen, I. Alafuzoff. 2001. Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12: 2085-2090.
Pohl, C., S. Jentsch. 2008. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11: 65-70.
Seibenhener, M. L., J. R. Babu, T. Geetha, H. C. Wong, N. R. Krishna, M. W. Wooten. 2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24: 8055-8068.
Tan, J. M., E. S. Wong, D. S. Kirkpatrick, O. Pletnikova, H. S. Ko, S. P. Tay, M. W. Ho, J. Troncoso, S. P. Gygi, M. K. Lee, et al 2008. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17: 431-439.
Tan, J. M., E. S. Wong, V. L. Dawson, T. M. Dawson, K. L. Lim. 2007. Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. Autophagy 4: 251-253.