The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway
Tóm tắt
Autophagy, a cellular degradative pathway, plays a key role in protecting the cytosol from bacterial colonization, but the mechanisms of bacterial recognition by this pathway are unclear. Autophagy is also known to degrade cargo tagged by ubiquitinated proteins, including aggregates of misfolded proteins, and peroxisomes. Autophagy of ubiquitinated cargo requires p62 (also known as SQSTM1), an adaptor protein with multiple protein-protein interaction domains, including a ubiquitin-associated (UBA) domain for ubiquitinated cargo binding and an LC3 interaction region (LIR) for binding the autophagy protein LC3. Previous studies demonstrated that the intracellular bacterial pathogen Salmonella typhimurium is targeted by autophagy during infection of host cells. Here we show that p62 is recruited to S. typhimurium targeted by autophagy, and that the recruitment of p62 is associated with ubiquitinated proteins localized to the bacteria. Expression of p62 is required for efficient autophagy of bacteria, as well as restriction of their intracellular replication. Our studies demonstrate that the surveillance of misfolded proteins and bacteria occurs via a conserved pathway, and they reveal a novel function for p62 in innate immunity.
Từ khóa
Tài liệu tham khảo
Ohsumi, Y.. 2001. Molecular dissection of autophagy: two ubiquitin-like systems. Nat. Rev. Mol. Cell Biol. 2: 211-216.
Kirkegaard, K., M. P. Taylor, W. T. Jackson. 2004. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat. Rev. Microbiol. 2: 301-314.
Crotzer, V. L., J. S. Blum. 2008. Cytosol to lysosome transport of intracellular antigens during immune surveillance. Traffic 9: 10-16.
Nakagawa, I., A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi, T. Kamimoto, A. Nara, J. Funao, M. Nakata, K. Tsuda, et al 2004. Autophagy defends cells against invading group A Streptococcus. Science 306: 1037-1040.
Birmingham, C. L., A. C. Smith, M. A. Bakowski, T. Yoshimori, J. H. Brumell. 2006. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281: 11374-11383.
Mizushima, N., B. Levine, A. M. Cuervo, D. J. Klionsky. 2008. Autophagy fights disease through cellular self-digestion. Nature 451: 1069-1075.
Tsolis, R. M., R. A. Kingsley, S. M. Townsend, T. A. Ficht, L. G. Adams, A. J. Baumler. 1999. Of mice, calves, and men: comparison of the mouse typhoid model with other Salmonella infections. Adv. Exp. Med. Biol. 473: 261-274.
Meresse, S., O. Steele-Mortimer, E. Moreno, M. Desjardins, B. Finlay, J.-P. Gorvel. 1999. Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat. Cell Biol. 1: E183-E188.
Seibenhener, M. L., T. Geetha, M. W. Wooten. 2007. Sequestosome 1/p62: more than just a scaffold. FEBS Lett. 581: 175-179.
Bjorkoy, G., T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H. Stenmark, T. Johansen. 2005. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171: 603-614.
Moscat, J., M. T. Diaz-Meco, M. W. Wooten. 2007. Signal integration and diversification through the p62 scaffold protein. Trends Biochem. Sci. 32: 95-100.
Komatsu, M., S. Waguri, M. Koike, Y. S. Sou, T. Ueno, T. Hara, N. Mizushima, J. Iwata, J. Ezaki, S. Murata, et al 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131: 1149-1163.
Pankiv, S., T. H. Clausen, T. Lamark, A. Brech, J. A. Bruun, H. Outzen, A. Overvatn, G. Bjorkoy, T. Johansen. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282: 24131-24145.
Shvets, E., E. Fass, R. Scherz-Shouval, Z. Elazar. 2008. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 121: 2685-2695.
Ichimura, Y., T. Kumanomidou, Y.-s. Sou, T. Mizushima, J. Ezaki, T. Ueno, E. Kominami, T. Yamane, K. Tanaka, M. Komatsu. 2008. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283: 22847-22857.
Kim, P. K., D. W. Hailey, R. T. Mullen, J. Lippincott-Schwartz. 2008. Inaugural article: Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105: 20567-20574.
Birmingham, C. L., J. H. Brumell. 2006. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2: 156-158.
Steele-Mortimer, O., S. Meresse, J. P. Gorvel, B. H. Toh, B. B. Finlay. 1999. Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell. Microbiol. 1: 33-49.
Kuma, A., M. Hatano, M. Matsui, A. Yamamoto, H. Nakaya, T. Yoshimori, Y. Ohsumi, T. Tokuhisa, N. Mizushima. 2004. The role of autophagy during the early neonatal starvation period. Nature 432: 1032-1036.
Kabeya, Y., N. Mizushima, T. Ueno, A. Yamamoto, T. Kirisako, T. Noda, E. Kominami, Y. Ohsumi, T. Yoshimori. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19: 5720-5728.
Lamark, T., M. Perander, H. Outzen, K. Kristiansen, A. Overvatn, E. Michaelsen, G. Bjorkoy, T. Johansen. 2003. Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J. Biol. Chem. 278: 34568-34581.
Slot, J. W., H. J. Geuze, S. Gigengack, G. E. Lienhard, D. E. James. 1991. Immuno-localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113: 123-135.
Perrin, A. J., X. Jiang, C. L. Birmingham, N. S. So, J. H. Brumell. 2004. Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr. Biol. 14: 806-811.
Ogawa, M., T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima, C. Sasakawa. 2005. Escape of intracellular Shigella from autophagy. Science 307: 727-731.
Zatloukal, K., C. Stumptner, A. Fuchsbichler, H. Heid, M. Schnoelzer, L. Kenner, R. Kleinert, M. Prinz, A. Aguzzi, H. Denk. 2002. p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. Am. J. Pathol. 160: 255-263.
Kuusisto, E., A. Salminen, I. Alafuzoff. 2001. Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12: 2085-2090.
Pohl, C., S. Jentsch. 2008. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat. Cell Biol. 11: 65-70.
Seibenhener, M. L., J. R. Babu, T. Geetha, H. C. Wong, N. R. Krishna, M. W. Wooten. 2004. Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24: 8055-8068.
Tan, J. M., E. S. Wong, D. S. Kirkpatrick, O. Pletnikova, H. S. Ko, S. P. Tay, M. W. Ho, J. Troncoso, S. P. Gygi, M. K. Lee, et al 2008. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 17: 431-439.
Tan, J. M., E. S. Wong, V. L. Dawson, T. M. Dawson, K. L. Lim. 2007. Lysine 63-linked polyubiquitin potentially partners with p62 to promote the clearance of protein inclusions by autophagy. Autophagy 4: 251-253.