Improving performance of macro electrolyte jet machining of TC4 titanium alloy: Experimental and numerical studies

Chinese Journal of Aeronautics - Tập 35 - Trang 280-294 - 2022
Minglu WANG1, Ningsong QU1
1College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Tài liệu tham khảo

Leyens, 2003 Dandekar, 2010, Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining, Int J Mach Tool Manu, 50, 174, 10.1016/j.ijmachtools.2009.10.013 Li, 2018, Electrochemical behaviour of laser solid formed Ti-6Al-4V alloy in a highly concentrated NaCl solution, Corros Sci, 142, 161, 10.1016/j.corsci.2018.07.023 Li, 2018, Distinction in anodic dissolution behavior on different planes of laser solid formed Ti-6Al-4V alloy, Electrochim ACTA, 283, 1482, 10.1016/j.electacta.2018.07.112 Liu, 2021, Mechanical performance of simple cubic architected titanium alloys fabricated via selective laser melting, Opt Laser Technol, 134, 106649, 10.1016/j.optlastec.2020.106649 Liu, 2020, Investigation on the performance of macro electrochemical machining of the end face of cylindrical parts, Int J Mech Sci, 169, 105333, 10.1016/j.ijmecsci.2019.105333 Hewidy, 2007, Modelling the performance of ECM assisted by low frequency vibrations, J Mater Process Tech, 189, 466, 10.1016/j.jmatprotec.2007.02.032 Haridy, 2011, An integrated framework of statistical process control and design of experiments for optimizing wire electrochemical turning process, Int J Adv Manuf Tech, 53, 191, 10.1007/s00170-010-2828-7 Lauwers, 2010, Development of an operations evaluation system for sinking EDM, CIRP Ann, 59, 223, 10.1016/j.cirp.2010.03.085 Huang, 2011, Micro-hole machined by electrochemical discharge machining (ECDM) with high speed rotating cathode, Adv Mater Res, 295–297, 1794, 10.4028/www.scientific.net/AMR.295-297.1794 Wang, 2016, Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method, Chin J Aeronaut, 29, 534, 10.1016/j.cja.2015.06.022 Hackert-Oschätzchen, 2015, Study on the dynamic generation of the jet shape in jetelectrochemical machining, J Mater Process Tech, 223, 240, 10.1016/j.jmatprotec.2015.03.049 Deconinck, 2012, A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis, Electrochim Acta, 60, 321, 10.1016/j.electacta.2011.11.070 Klocke, 2018, A novel modeling approach for the simulation of precise electrochemical machining (PECM) with pulsed current and oscillating cathode, Procedia CIRP, 68, 499, 10.1016/j.procir.2017.12.081 Ruszaj, 2001, The mathematical modelling of electrochemical machining with flat ended universal electrodes, J Mater Process Tech, 109, 333, 10.1016/S0924-0136(00)00816-5 Kozak, 2000, The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces, J Mater Process Tech, 107, 283, 10.1016/S0924-0136(00)00697-X Kozak, 1998, Mathematical models for computer simulation of electrochemical machining processes, J Mater Process Tech, 76, 170, 10.1016/S0924-0136(97)00333-6 Natsu, 2007, Generating complicated surface with electrolyte jet machining, Precis Eng, 31, 33, 10.1016/j.precisioneng.2006.02.004 Hackert-Oschätzchen, 2012, Micro machining with continuous electrolytic free jet, Precis Eng, 36, 612, 10.1016/j.precisioneng.2012.05.003 Mitchell-Smith, 2017, Energy distribution modulation by mechanical design for electrochemical jet processing techniques, Int J Mach Tools Manuf, 122, 32, 10.1016/j.ijmachtools.2017.05.005 Bisterov, 2018, Specific and programmable surface structuring by electrochemical jet processing, Procedia CIRP, 68, 460, 10.1016/j.procir.2017.12.128 Zhao, 2019, Investigation on electrolyte jet machining of three-dimensional freeform surfaces, Precis Eng, 60, 42, 10.1016/j.precisioneng.2019.06.009 Ghoshal, 2015, Investigation on profile of microchannel generated by electrochemical micromachining, J Mater Process Technol, 222, 410, 10.1016/j.jmatprotec.2015.03.025 Mitchell-Smith, 2016, Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance, Procedia CIRP, 42, 379, 10.1016/j.procir.2016.02.215 Guo, 2017, Fabrication of mesoscale channel by scanning micro electrochemical flow cell (SMEFC), Micromachines, 8, 143, 10.3390/mi8050143 Mitchell-Smith, 2018, Advancing electrochemical jet methods through manipulation of the angle of address, J Mater Process Technol, 255, 364, 10.1016/j.jmatprotec.2017.12.026 Clare, 2018, Precision enhanced electrochemical jet processing, CIRP Ann-Manuf Techn, 67, 205, 10.1016/j.cirp.2018.04.086 Zawistowski, 1990, New system of electrochemical form machining using universal rotating tools, Int J Mach Tools Manuf, 30, 475, 10.1016/0890-6955(90)90190-T Niu, 2017, Investigation of inner-jet electrochemical milling of nickel-based alloy GH4169/Inconel 718, Int J Adv Manuf Technol, 93, 2123, 10.1007/s00170-017-0680-8 Liu, 2017, Jet electrochemical machining of TB6 titanium alloy, Int J Adv Manuf Technol, 90, 2397, 10.1007/s00170-016-9500-9 Liu, 2019, Investigation on parametric effects on groove profile generated on Ti1023 titanium alloy by jet electrochemical machining, Int J Adv Manuf Technol, 100, 2357, 10.1007/s00170-018-2804-1 Liu, 2020, Obtaining high surface quality in electrolyte jet machining TB6 titanium alloy via enhanced product transport, J Mater Process Technol, 276, 116381, 10.1016/j.jmatprotec.2019.116381 Liu, 2019, Electrochemical milling of TB6 titanium alloy in NaNO3 solution, J Electrochem Soc, 166, E35, 10.1149/2.1181902jes