Improving performance of macro electrolyte jet machining of TC4 titanium alloy: Experimental and numerical studies
Tài liệu tham khảo
Leyens, 2003
Dandekar, 2010, Machinability improvement of titanium alloy (Ti-6Al-4V) via LAM and hybrid machining, Int J Mach Tool Manu, 50, 174, 10.1016/j.ijmachtools.2009.10.013
Li, 2018, Electrochemical behaviour of laser solid formed Ti-6Al-4V alloy in a highly concentrated NaCl solution, Corros Sci, 142, 161, 10.1016/j.corsci.2018.07.023
Li, 2018, Distinction in anodic dissolution behavior on different planes of laser solid formed Ti-6Al-4V alloy, Electrochim ACTA, 283, 1482, 10.1016/j.electacta.2018.07.112
Liu, 2021, Mechanical performance of simple cubic architected titanium alloys fabricated via selective laser melting, Opt Laser Technol, 134, 106649, 10.1016/j.optlastec.2020.106649
Liu, 2020, Investigation on the performance of macro electrochemical machining of the end face of cylindrical parts, Int J Mech Sci, 169, 105333, 10.1016/j.ijmecsci.2019.105333
Hewidy, 2007, Modelling the performance of ECM assisted by low frequency vibrations, J Mater Process Tech, 189, 466, 10.1016/j.jmatprotec.2007.02.032
Haridy, 2011, An integrated framework of statistical process control and design of experiments for optimizing wire electrochemical turning process, Int J Adv Manuf Tech, 53, 191, 10.1007/s00170-010-2828-7
Lauwers, 2010, Development of an operations evaluation system for sinking EDM, CIRP Ann, 59, 223, 10.1016/j.cirp.2010.03.085
Huang, 2011, Micro-hole machined by electrochemical discharge machining (ECDM) with high speed rotating cathode, Adv Mater Res, 295–297, 1794, 10.4028/www.scientific.net/AMR.295-297.1794
Wang, 2016, Convex shaping process simulation during counter-rotating electrochemical machining by using the finite element method, Chin J Aeronaut, 29, 534, 10.1016/j.cja.2015.06.022
Hackert-Oschätzchen, 2015, Study on the dynamic generation of the jet shape in jetelectrochemical machining, J Mater Process Tech, 223, 240, 10.1016/j.jmatprotec.2015.03.049
Deconinck, 2012, A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis, Electrochim Acta, 60, 321, 10.1016/j.electacta.2011.11.070
Klocke, 2018, A novel modeling approach for the simulation of precise electrochemical machining (PECM) with pulsed current and oscillating cathode, Procedia CIRP, 68, 499, 10.1016/j.procir.2017.12.081
Ruszaj, 2001, The mathematical modelling of electrochemical machining with flat ended universal electrodes, J Mater Process Tech, 109, 333, 10.1016/S0924-0136(00)00816-5
Kozak, 2000, The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces, J Mater Process Tech, 107, 283, 10.1016/S0924-0136(00)00697-X
Kozak, 1998, Mathematical models for computer simulation of electrochemical machining processes, J Mater Process Tech, 76, 170, 10.1016/S0924-0136(97)00333-6
Natsu, 2007, Generating complicated surface with electrolyte jet machining, Precis Eng, 31, 33, 10.1016/j.precisioneng.2006.02.004
Hackert-Oschätzchen, 2012, Micro machining with continuous electrolytic free jet, Precis Eng, 36, 612, 10.1016/j.precisioneng.2012.05.003
Mitchell-Smith, 2017, Energy distribution modulation by mechanical design for electrochemical jet processing techniques, Int J Mach Tools Manuf, 122, 32, 10.1016/j.ijmachtools.2017.05.005
Bisterov, 2018, Specific and programmable surface structuring by electrochemical jet processing, Procedia CIRP, 68, 460, 10.1016/j.procir.2017.12.128
Zhao, 2019, Investigation on electrolyte jet machining of three-dimensional freeform surfaces, Precis Eng, 60, 42, 10.1016/j.precisioneng.2019.06.009
Ghoshal, 2015, Investigation on profile of microchannel generated by electrochemical micromachining, J Mater Process Technol, 222, 410, 10.1016/j.jmatprotec.2015.03.025
Mitchell-Smith, 2016, Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance, Procedia CIRP, 42, 379, 10.1016/j.procir.2016.02.215
Guo, 2017, Fabrication of mesoscale channel by scanning micro electrochemical flow cell (SMEFC), Micromachines, 8, 143, 10.3390/mi8050143
Mitchell-Smith, 2018, Advancing electrochemical jet methods through manipulation of the angle of address, J Mater Process Technol, 255, 364, 10.1016/j.jmatprotec.2017.12.026
Clare, 2018, Precision enhanced electrochemical jet processing, CIRP Ann-Manuf Techn, 67, 205, 10.1016/j.cirp.2018.04.086
Zawistowski, 1990, New system of electrochemical form machining using universal rotating tools, Int J Mach Tools Manuf, 30, 475, 10.1016/0890-6955(90)90190-T
Niu, 2017, Investigation of inner-jet electrochemical milling of nickel-based alloy GH4169/Inconel 718, Int J Adv Manuf Technol, 93, 2123, 10.1007/s00170-017-0680-8
Liu, 2017, Jet electrochemical machining of TB6 titanium alloy, Int J Adv Manuf Technol, 90, 2397, 10.1007/s00170-016-9500-9
Liu, 2019, Investigation on parametric effects on groove profile generated on Ti1023 titanium alloy by jet electrochemical machining, Int J Adv Manuf Technol, 100, 2357, 10.1007/s00170-018-2804-1
Liu, 2020, Obtaining high surface quality in electrolyte jet machining TB6 titanium alloy via enhanced product transport, J Mater Process Technol, 276, 116381, 10.1016/j.jmatprotec.2019.116381
Liu, 2019, Electrochemical milling of TB6 titanium alloy in NaNO3 solution, J Electrochem Soc, 166, E35, 10.1149/2.1181902jes