Microtubule organelles in Giardia

Advances in Parasitology - Tập 107 - Trang 25-96 - 2020
Kari D. Hagen1, Shane G. McInally1, Nicholas D. Hilton1, Scott C. Dawson1
1Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States

Tài liệu tham khảo

Akhmanova, 2015, Control of microtubule organization and dynamics: two ends in the limelight, Nat. Rev. Mol. Cell Biol., 16, 711, 10.1038/nrm4084 Andersson, 2007, A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution, BMC Genomics, 8, 51, 10.1186/1471-2164-8-51 Aurrecoechea, 2009, GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis, Nucleic Acids Res., 37, D526, 10.1093/nar/gkn631 Avidor-Reiss, 2015, Shared and distinct mechanisms of compartmentalized and cytosolic ciliogenesis, Curr. Biol., 25, R1143, 10.1016/j.cub.2015.11.001 Baker, 1988, Sequence of a giardin subunit cDNA from Giardia lamblia, Nucleic Acids Res., 16, 7177, 10.1093/nar/16.14.7177 Barker, 2014, Bioinformatic analysis of ciliary transition zone proteins reveals insights into the evolution of ciliopathy networks, BMC Genomics, 15, 531, 10.1186/1471-2164-15-531 Bauer, 1999, Functional identification of alpha 1-giardin as an annexin of Giardia lamblia, FEMS Microbiol. Lett., 173, 147 Beech, 1991, Development of the flagellar apparatus during the cell cycle in unicellular algae, Protoplasma, 164, 23, 10.1007/BF01320812 Beisson, 2003, Basal body/centriole assembly and continuity, Curr. Opin. Cell Biol., 15, 96, 10.1016/S0955-0674(02)00017-0 Belhadri, 1995, Presence of centrin in the human parasite Giardia: a further indication of its ubiquity in eukaryotes, Biochem. Biophys. Res. Commun., 214, 597, 10.1006/bbrc.1995.2327 Benchimol, 2004, Visualization of the funis of Giardia lamblia by high-resolution field emission scanning electron microscopy—new insights, J. Struct. Biol., 147, 102, 10.1016/j.jsb.2004.01.017 Bhattacharyya, 2008, Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin, Med. Res. Rev., 28, 155, 10.1002/med.20097 Briggs, 2004, More than one way to build a flagellum: comparative genomics of parasitic protozoa, Curr. Biol., 14, R611, 10.1016/j.cub.2004.07.041 Brooks, 2014, Multiciliated cells, Curr. Biol., 24, R973, 10.1016/j.cub.2014.08.047 Brown, 2016, A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc, J. Struct. Biol., 194, 38, 10.1016/j.jsb.2016.01.011 Brugerolle, 1975, Contribution à l' étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). V. Nouvelle interpretation de l'organisation cellulaire de Giardie, Protistologica, 11, 99 Buchel, 1987, In vitro excystation of Giardia from humans: a scanning electron microscopy study, J. Parasitol., 73, 487, 10.2307/3282126 Buisson, 2013, Intraflagellar transport proteins cycle between the flagellum and its base, J. Cell Sci., 126, 327, 10.1242/jcs.117069 Campanati, 2002, Video-microscopy observations of fast dynamic processes in the protozoon Giardia lamblia, Cell Motil. Cytoskeleton, 51, 213, 10.1002/cm.10026 Campanati, 2003, Tubulin diversity in trophozoites of Giardia lamblia, Histochem. Cell Biol., 119, 323, 10.1007/s00418-003-0517-4 Carpenter, 2009, Using morpholinos for gene knockdown in Giardia intestinalis, Eukaryot. Cell, 8, 916, 10.1128/EC.00041-09 Carvalho, 2004, The caudal complex of Giardia lamblia and its relation to motility, Exp. Parasitol., 108, 154, 10.1016/j.exppara.2004.08.007 Chaaban, 2017, A microtubule bestiary: structural diversity in tubulin polymers, Mol. Biol. Cell, 28, 2924, 10.1091/mbc.e16-05-0271 Chavez, 1992, Giardia lamblia: ultrastructural study of the in vitro effect of benzimidazoles, J. Protozool., 39, 510, 10.1111/j.1550-7408.1992.tb04841.x Cheissin, 1964, Ultrastructure of Lamblia duodenalis. I. Body surface, sucking disc and median bodies, J. Protozool., 11, 91, 10.1111/j.1550-7408.1964.tb01725.x Chen, 2007, Inhibition of krr1 gene expression in Giardia canis by a virus-mediated hammerhead ribozyme, Vet. Parasitol., 143, 14, 10.1016/j.vetpar.2006.07.029 Clark, 1988, Triton-labile antigens in flagella isolated from Giardia lamblia, Parasitol. Res., 74, 415, 10.1007/BF00535140 Crossley, 1983, Characterization of proteins from the cytoskeleton of Giardia lamblia, J. Cell Sci., 59, 81, 10.1242/jcs.59.1.81 Crossley, 1985, Assembly of 2.5 nm filaments from giardin, a protein associated with cytoskeletal microtubules in Giardia, J. Cell Sci., 78, 205, 10.1242/jcs.78.1.205 Crossley, 1986, Immunocytochemical differentiation of microtubules in the cytoskeleton of Giardia lamblia using monoclonal antibodies to alpha-tubulin and polyclonal antibodies to associated low molecular weight proteins, J. Cell Sci., 80, 233, 10.1242/jcs.80.1.233 Dan, 2000, Inhibition of pyruvate-ferredoxin oxidoreductase gene expression in Giardia lamblia by a virus-mediated hammerhead ribozyme, Mol. Microbiol., 36, 447, 10.1046/j.1365-2958.2000.01863.x Davids, 2008, Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite, Int. J. Parasitol., 38, 353, 10.1016/j.ijpara.2007.08.012 Davids, 2011, An atypical proprotein convertase in Giardia lamblia differentiation, Mol. Biochem. Parasitol., 175, 169, 10.1016/j.molbiopara.2010.11.008 Dawson, 2010, An insider's guide to the microtubule cytoskeleton of Giardia, Cell. Microbiol., 12, 588, 10.1111/j.1462-5822.2010.01458.x Dawson, 2010, Life with eight flagella: flagellar assembly and division in Giardia, Curr. Opin. Microbiol., 13, 480, 10.1016/j.mib.2010.05.014 Dawson, 2013, Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists, Curr. Opin. Cell Biol., 25, 134, 10.1016/j.ceb.2012.11.005 Dawson, 2007, Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis, Eukaryot. Cell, 6, 2354, 10.1128/EC.00128-07 Desai, 1997, Microtubule polymerization dynamics, Annu. Rev. Cell Dev. Biol., 13, 83, 10.1146/annurev.cellbio.13.1.83 Dobell, 1932 Dutcher, 1995, Flagellar assembly in two hundred and fifty easy-to-follow steps, Trends Genet., 11, 398, 10.1016/S0168-9525(00)89123-4 Ebneter, 2014, The single epsin homolog in Giardia lamblia localizes to the ventral disk of trophozoites and is not associated with clathrin membrane coats, Mol. Biochem. Parasitol., 197, 24, 10.1016/j.molbiopara.2014.09.008 Ellis, 2003, Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization, J. Biol. Chem., 278, 1936, 10.1074/jbc.M209274200 Elmendorf, 2003, The cytoskeleton of Giardia lamblia, Int. J. Parasitol., 33, 3, 10.1016/S0020-7519(02)00228-X Elmendorf, 2005, Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains, Int. J. Parasitol., 35, 1001, 10.1016/j.ijpara.2005.03.009 Feely, 1986, A simplified method for in vitro excystation of Giardia muris, J. Parasitol., 72, 474, 10.2307/3281691 Feely, 1981, Isolation and purification of Giardia trophozoites from rat intestine, J. Parasitol., 67, 59, 10.2307/3280779 Feely, 1982, Effect of cytochalasin-B, low Ca++ concentration, iodoacetic acid, and quinacrine-HCl on the attachment of Giardia trophozoites in vitro, J. Parasitol., 68, 869, 10.2307/3280996 Feely, 1982, Giardia spp.: distribution of contractile proteins in the attachment organelle, Exp. Parasitol., 53, 145, 10.1016/0014-4894(82)90100-X Feely, 1990, The biology of Giardia, 11 Friend, 1966, The fine structure of Giardia muris, J. Cell Biol., 29, 317, 10.1083/jcb.29.2.317 Fritz-Laylin, 2010, The genome of Naegleria gruberi illuminates early eukaryotic versatility, Cell, 140, 631, 10.1016/j.cell.2010.01.032 Garnham, 2012, The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions, Cytoskeleton (Hoboken), 69, 442, 10.1002/cm.21027 Ghosh, 2001, How Giardia swim and divide, Infect. Immun., 69, 7866, 10.1128/IAI.69.12.7866-7872.2001 Hagen, 2011, Novel structural components of the ventral disc and lateral crest in Giardia intestinalis, PLoS Negl. Trop. Dis., 5, 10.1371/journal.pntd.0001442 Hansen, 2008, Tonic shock induces detachment of Giardia lamblia, PLoS Negl. Trop. Dis., 2, e169, 10.1371/journal.pntd.0000169 Hansen, 2006, Giardia lamblia attachment force is insensitive to surface treatments, Eukaryot. Cell, 5, 781, 10.1128/EC.5.4.781-783.2006 Hao, 2009, Analysis of intraflagellar transport in C. elegans sensory cilia, Methods Cell Biol, 93, 235, 10.1016/S0091-679X(08)93013-2 Harb, 2015, The eukaryotic pathogen databases: a functional genomic resource integrating data from human and veterinary parasites, Methods Mol. Biol., 1201, 1, 10.1007/978-1-4939-1438-8_1 Hardin, 2017, Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking, Proc. Natl. Acad. Sci. U. S. A., 114, E5854, 10.1073/pnas.1705096114 Hoeng, 2008, High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis, Mol. Biol. Cell, 19, 3124, 10.1091/mbc.e07-11-1156 Holberton, 1973, Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris, J. Cell Sci., 13, 11, 10.1242/jcs.13.1.11 Holberton, 1973, Mechanism of attachment of Giardia to the wall of the small intestine, Trans. R. Soc. Trop. Med. Hyg., 67, 29, 10.1016/0035-9203(73)90299-X Holberton, 1974, Attachment of Giardia-a hydrodynamic model based on flagellar activity, J. Exp. Biol., 60, 207, 10.1242/jeb.60.1.207 Holberton, 1981, Arrangement of subunits in microribbons from Giardia, J. Cell Sci., 47, 167, 10.1242/jcs.47.1.167 Holberton, 1981, Isolation of the cytoskeleton from Giardia. Tubulin and a low-molecular-weight protein associated with microribbon structures, J. Cell Sci., 47, 139, 10.1242/jcs.47.1.139 House, 2011, Giardia flagellar motility is not directly required to maintain attachment to surfaces, PLoS Pathog., 7, 10.1371/journal.ppat.1002167 Hu, 2006, Cytoskeletal components of an invasion machine—the apical complex of Toxoplasma gondii, PLoS Pathog., 2, e13, 10.1371/journal.ppat.0020013 Ichikawa, 2018, Microtubule inner proteins: a meshwork of luminal proteins stabilizing the doublet microtubule, Bioessays, 40, 1700209, 10.1002/bies.201700209 Inge, 1988, Attachment of Giardia lamblia to rat intestinal epithelial cells, Gut, 29, 795, 10.1136/gut.29.6.795 Islam, 2018, New paradigm in ankyrin repeats: beyond protein-protein interaction module, Int. J. Biol. Macromol., 109, 1164, 10.1016/j.ijbiomac.2017.11.101 Jirakova, 2012, How nuclei of Giardia pass through cell differentiation: semi-open mitosis followed by nuclear interconnection, Protist, 163, 465, 10.1016/j.protis.2011.11.008 Kampmann, 2018, CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine, ACS Chem. Biol., 13, 406, 10.1021/acschembio.7b00657 Kang, 2010, Identification of end-binding 1 (EB1) interacting proteins in Giardia lamblia, Parasitol. Res., 106, 723, 10.1007/s00436-009-1687-3 Keller, 2005, Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes, Curr. Biol., 15, 1090, 10.1016/j.cub.2005.05.024 Kim, 2018, Roles of end-binding 1 protein and gamma-tubulin small complex in cytokinesis and flagella formation of Giardia lamblia, Microbiologyopen, 8, e748 Kim, 2019, Role of gamma-giardin in ventral disc formation of Giardia lamblia, Parasit. Vectors, 12, 227, 10.1186/s13071-019-3478-8 Kim, 2013, Identification of alpha-11 giardin as a flagellar and surface component of Giardia lamblia, Exp. Parasitol., 135, 227, 10.1016/j.exppara.2013.07.010 Kim, 2014, Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein, PLoS One, 9, 10.1371/journal.pone.0097850 Kim, 2017, Phosphorylation of serine 148 in Giardia lamblia end-binding 1 protein is important for cell division, J. Eukaryot. Microbiol., 64, 464, 10.1111/jeu.12384 Kozminski, 1993, A motility in the eukaryotic flagellum unrelated to flagellar beating, Proc. Natl. Acad. Sci. U. S. A., 90, 5519, 10.1073/pnas.90.12.5519 Kulda, 1995, Giardia in humans and animals, 225 Larson, 2013, CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protoc., 8, 2180, 10.1038/nprot.2013.132 Lauwaet, 2007, Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation, Mol. Biochem. Parasitol., 152, 80, 10.1016/j.molbiopara.2006.12.001 Lauwaet, 2011, Mining the Giardia genome and proteome for conserved and unique basal body proteins, Int. J. Parasitol., 41, 1079, 10.1016/j.ijpara.2011.06.001 Lechtreck, 2015, IFT-cargo interactions and protein transport in cilia, Trends Biochem. Sci., 40, 765, 10.1016/j.tibs.2015.09.003 Lenaghan, 2011, High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites, Proc. Natl. Acad. Sci. U. S. A., 108, E550, 10.1073/pnas.1106904108 Lenaghan, 2013, Modeling and analysis of propulsion in the multiflagellated micoorganism Giardia lamblia, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 88, 012726, 10.1103/PhysRevE.88.012726 Li, 2006, Ankyrin repeat: a unique motif mediating protein-protein interactions, Biochemistry, 45, 15168, 10.1021/bi062188q Luck, 1984, Genetic and biochemical dissection of the eucaryotic flagellum, J. Cell Biol., 98, 789, 10.1083/jcb.98.3.789 Magne, 1991, Role of cytoskeleton and surface lectins in Giardia duodenalis attachment to Caco2 cells, Parasitol. Res., 77, 659, 10.1007/BF00928679 Maia-Brigagao, 2013, New associated structures of the anterior flagella of Giardia duodenalis, Microsc. Microanal., 19, 1374, 10.1017/S1431927613013275 Manning, 2011, The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology, Genome Biol., 12, R66, 10.1186/gb-2011-12-7-r66 Manton, 1952, An electron microscope study of the spermatozoid of sphagnum, J. Exp. Bot., 3, 265, 10.1093/jxb/3.3.265 Mariante, 2005, Giardia lamblia: evaluation of the in vitro effects of nocodazole and colchicine on trophozoites, Exp. Parasitol., 110, 62, 10.1016/j.exppara.2005.01.007 Marshall, 2001, Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control, J. Cell Biol., 155, 405, 10.1083/jcb.200106141 Marshall, 2005, Flagellar length control system: testing a simple model based on intraflagellar transport and turnover, Mol. Biol. Cell, 16, 270, 10.1091/mbc.e04-07-0586 McInally, 2016, Eight unique basal bodies in the multi-flagellated diplomonad Giardia lamblia, Cilia, 5, 21, 10.1186/s13630-016-0042-4 McInally, 2019, Robust and stable transcriptional repression in Giardia using CRISPRi, Mol. Biol. Cell, 30, 119, 10.1091/mbc.E18-09-0605 McInally, 2020, Length-dependent disassembly maintains four different flagellar lengths in Giardia, eLife McNally, 2018, Microtubule-severing enzymes: from cellular functions to molecular mechanism, J. Cell Biol., 217, 4057, 10.1083/jcb.201612104 Meng, 1996, Immunolocalization and sequence of caltractin/centrin from the early branching eukaryote Giardia lamblia, Mol. Biochem. Parasitol., 79, 103, 10.1016/0166-6851(96)02636-9 Merchant, 2007, The Chlamydomonas genome reveals the evolution of key animal and plant functions, Science, 318, 245, 10.1126/science.1143609 Midlej, 2009, Giardia lamblia behavior during encystment: how morphological changes in shape occur, Parasitol. Int., 58, 72, 10.1016/j.parint.2008.11.002 Moritz, 2001, Gamma-tubulin complexes and microtubule nucleation, Curr. Opin. Struct. Biol., 11, 174, 10.1016/S0959-440X(00)00187-1 Morrison, 2007, Genomic minimalism in the early diverging intestinal parasite Giardia lamblia, Science, 317, 1921, 10.1126/science.1143837 Nash, 1983, Excretory-secretory products of Giardia lamblia, J. Immunol., 131, 2004, 10.4049/jimmunol.131.4.2004 Nohria, 1992, Identification and characterization of gamma giardin and the gamma giardin gene from Giardia lamblia, Mol. Biochem. Parasitol., 56, 27, 10.1016/0166-6851(92)90151-9 Nohynkova, 2000, Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis, Eur. J. Cell Biol., 79, 438, 10.1078/0171-9335-00066 Nohynkova, 2006, Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell, Eukaryot. Cell, 5, 753, 10.1128/EC.5.4.753-761.2006 Nosala, 2015, The critical role of the cytoskeleton in the pathogenesis of Giardia, Curr. Clin. Microbiol. Rep., 2, 155, 10.1007/s40588-015-0026-y Nosala, 2018, 'Disc-o-Fever': getting down with Giardia's groovy microtubule organelle, Trends Cell Biol., 28, 99, 10.1016/j.tcb.2017.10.007 Nosala, 2019, Disc-associated proteins (DAPs) mediate the unusual hyperstability of Giardias ventral disc, BioRxiv, 361105 O'Regan, 2007, Mitotic regulation by NIMA-related kinases, Cell Div., 2, 25, 10.1186/1747-1028-2-25 Orozco, 1999, Movement of motor and cargo along cilia, Nature, 398, 674, 10.1038/19448 Ortega-Barria, 1994, Growth inhibition of the intestinal parasite Giardia lamblia by a dietary lectin is associated with arrest of the cell cycle, J. Clin. Investig., 94, 2283, 10.1172/JCI117591 Ostrowski, 2002, A proteomic analysis of human cilia: identification of novel components, Mol. Cell. Proteomics, 1, 451, 10.1074/mcp.M200037-MCP200 Owen, 1980, The ultrastructural basis of Giardia function, Trans. R. Soc. Trop. Med. Hyg., 74, 429, 10.1016/0035-9203(80)90043-7 Oxberry, 1994, Evaluation of the effects of albendazole and metronidazole on the ultrastructure of Giardia duodenalis, Trichomonas vaginalis and Spironucleus muris using transmission electron microscopy, Int. J. Parasitol., 24, 695, 10.1016/0020-7519(94)90123-6 Palm, 2003, Identification of immunoreactive proteins during acute human giardiasis, J. Infect. Dis., 187, 1849, 10.1086/375356 Palm, 2005, Developmental changes in the adhesive disk during Giardia differentiation, Mol. Biochem. Parasitol., 141, 199, 10.1016/j.molbiopara.2005.03.005 Paredez, 2011, An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins, Proc. Natl. Acad. Sci. U. S. A., 108, 6151, 10.1073/pnas.1018593108 Pazour, 2003, The vertebrate primary cilium is a sensory organelle, Curr. Opin. Cell Biol., 15, 105, 10.1016/S0955-0674(02)00012-1 Pazour, 2005, Proteomic analysis of a eukaryotic cilium, J. Cell Biol., 170, 103, 10.1083/jcb.200504008 Peattie, 1990, The giardins of Giardia lamblia: genes and proteins with promise, Parasitol. Today, 6, 52, 10.1016/0169-4758(90)90070-K Pellegrini, 2005, Review: tubulin function, action of antitubulin drugs, and new drug development, Cancer Investig., 23, 264, 10.1081/CNV-200055970 Pfannenschmid, 2003, Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division, J. Cell Sci., 116, 1449, 10.1242/jcs.00337 Piva, 2004, The median body of Giardia lamblia: an ultrastructural study, Biol. Cell., 96, 735, 10.1016/j.biolcel.2004.05.006 Poxleitner, 2008, Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis, Science, 319, 1530, 10.1126/science.1153752 Preisner, 2016, The cytoskeleton of parabasalian parasites comprises proteins that share properties common to intermediate filament proteins, Protist, 167, 526, 10.1016/j.protis.2016.09.001 Ren, 2017, Taming parasites by tailoring them, Front. Cell. Infect. Microbiol., 7, 292, 10.3389/fcimb.2017.00292 Rescher, 2004, Annexins—unique membrane binding proteins with diverse functions, J. Cell Sci., 117, 2631, 10.1242/jcs.01245 Rosenbaum, 2002, Intraflagellar transport, Nat. Rev. Mol. Cell Biol., 3, 813, 10.1038/nrm952 Roxstrom-Lindquist, 2006, Giardia immunity—an update, Trends Parasitol., 22, 26, 10.1016/j.pt.2005.11.005 Russell, 2017, Non-model model organisms, BMC Biol., 15, 55, 10.1186/s12915-017-0391-5 Sagolla, 2006, Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis, J. Cell Sci., 119, 4889, 10.1242/jcs.03276 Scholey, 2003, Intraflagellar transport, Annu. Rev. Cell Dev. Biol., 19, 423, 10.1146/annurev.cellbio.19.111401.091318 Schwartz, 2012, A detailed, hierarchical study of Giardia lamblia's ventral disc reveals novel microtubule-associated protein complexes, PLoS One, 7, 10.1371/journal.pone.0043783 Song, 2015, Post-translational modifications of tubulin: pathways to functional diversity of microtubules, Trends Cell Biol., 25, 125, 10.1016/j.tcb.2014.10.004 Sousa, 2001, Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells, Clin. Diagn. Lab. Immunol., 8, 258, 10.1128/CDLI.8.2.258-265.2001 Szkodowska, 2002, Annexin XXI (ANX21) of Giardia lamblia has sequence motifs uniquely sdhared by giardial annexins and is specifically localized in the flagella, J. Biol. Chem., 277, 25703, 10.1074/jbc.M203260200 Tumova, 2007, Cell division of Giardia intestinalis: assembly and disassembly of the adhesive disc, and the cytokinesis, Cell Motil. Cytoskeleton, 64, 288, 10.1002/cm.20183 Vahrmann, 2008, alpha14-Giardin (annexin E1) is associated with tubulin in trophozoites of Giardia lamblia and forms local slubs in the flagella, Parasitol. Res., 102, 321, 10.1007/s00436-007-0758-6 Vicente, 2014, Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex, Mol. Biol. Cell, 25, 2774, 10.1091/mbc.e14-05-0975 Wei, 2010, Giardia lamblia: intracellular localization of alpha8-giardin, Exp. Parasitol., 126, 489, 10.1016/j.exppara.2010.05.028 Weiland, 2003, Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity, Int. J. Parasitol., 33, 1341, 10.1016/S0020-7519(03)00201-7 Weiland, 2005, Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia, Int. J. Parasitol., 35, 617, 10.1016/j.ijpara.2004.12.009 Weisbrich, 2007, Structure-function relationship of CAP-Gly domains, Nat. Struct. Mol. Biol., 14, 959, 10.1038/nsmb1291 Wickstead, 2006, A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions, Mol. Biol. Cell, 17, 1734, 10.1091/mbc.e05-11-1090 Wickstead, 2007, Dyneins across eukaryotes: a comparative genomic analysis, Traffic, 8, 1708, 10.1111/j.1600-0854.2007.00646.x Woessner, 2012, The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment, Eukaryot. Cell, 11, 292, 10.1128/EC.05262-11 Wu, 2016, Immunolocalization of alpha18- and alpha12-giardin in Giardia lamblia trophozoites, Parasitol. Res., 115, 4183, 10.1007/s00436-016-5194-z