Microtubule organelles in Giardia
Tài liệu tham khảo
Akhmanova, 2015, Control of microtubule organization and dynamics: two ends in the limelight, Nat. Rev. Mol. Cell Biol., 16, 711, 10.1038/nrm4084
Andersson, 2007, A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution, BMC Genomics, 8, 51, 10.1186/1471-2164-8-51
Aurrecoechea, 2009, GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis, Nucleic Acids Res., 37, D526, 10.1093/nar/gkn631
Avidor-Reiss, 2015, Shared and distinct mechanisms of compartmentalized and cytosolic ciliogenesis, Curr. Biol., 25, R1143, 10.1016/j.cub.2015.11.001
Baker, 1988, Sequence of a giardin subunit cDNA from Giardia lamblia, Nucleic Acids Res., 16, 7177, 10.1093/nar/16.14.7177
Barker, 2014, Bioinformatic analysis of ciliary transition zone proteins reveals insights into the evolution of ciliopathy networks, BMC Genomics, 15, 531, 10.1186/1471-2164-15-531
Bauer, 1999, Functional identification of alpha 1-giardin as an annexin of Giardia lamblia, FEMS Microbiol. Lett., 173, 147
Beech, 1991, Development of the flagellar apparatus during the cell cycle in unicellular algae, Protoplasma, 164, 23, 10.1007/BF01320812
Beisson, 2003, Basal body/centriole assembly and continuity, Curr. Opin. Cell Biol., 15, 96, 10.1016/S0955-0674(02)00017-0
Belhadri, 1995, Presence of centrin in the human parasite Giardia: a further indication of its ubiquity in eukaryotes, Biochem. Biophys. Res. Commun., 214, 597, 10.1006/bbrc.1995.2327
Benchimol, 2004, Visualization of the funis of Giardia lamblia by high-resolution field emission scanning electron microscopy—new insights, J. Struct. Biol., 147, 102, 10.1016/j.jsb.2004.01.017
Bhattacharyya, 2008, Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin, Med. Res. Rev., 28, 155, 10.1002/med.20097
Briggs, 2004, More than one way to build a flagellum: comparative genomics of parasitic protozoa, Curr. Biol., 14, R611, 10.1016/j.cub.2004.07.041
Brooks, 2014, Multiciliated cells, Curr. Biol., 24, R973, 10.1016/j.cub.2014.08.047
Brown, 2016, A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc, J. Struct. Biol., 194, 38, 10.1016/j.jsb.2016.01.011
Brugerolle, 1975, Contribution à l' étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). V. Nouvelle interpretation de l'organisation cellulaire de Giardie, Protistologica, 11, 99
Buchel, 1987, In vitro excystation of Giardia from humans: a scanning electron microscopy study, J. Parasitol., 73, 487, 10.2307/3282126
Buisson, 2013, Intraflagellar transport proteins cycle between the flagellum and its base, J. Cell Sci., 126, 327, 10.1242/jcs.117069
Campanati, 2002, Video-microscopy observations of fast dynamic processes in the protozoon Giardia lamblia, Cell Motil. Cytoskeleton, 51, 213, 10.1002/cm.10026
Campanati, 2003, Tubulin diversity in trophozoites of Giardia lamblia, Histochem. Cell Biol., 119, 323, 10.1007/s00418-003-0517-4
Carpenter, 2009, Using morpholinos for gene knockdown in Giardia intestinalis, Eukaryot. Cell, 8, 916, 10.1128/EC.00041-09
Carvalho, 2004, The caudal complex of Giardia lamblia and its relation to motility, Exp. Parasitol., 108, 154, 10.1016/j.exppara.2004.08.007
Chaaban, 2017, A microtubule bestiary: structural diversity in tubulin polymers, Mol. Biol. Cell, 28, 2924, 10.1091/mbc.e16-05-0271
Chavez, 1992, Giardia lamblia: ultrastructural study of the in vitro effect of benzimidazoles, J. Protozool., 39, 510, 10.1111/j.1550-7408.1992.tb04841.x
Cheissin, 1964, Ultrastructure of Lamblia duodenalis. I. Body surface, sucking disc and median bodies, J. Protozool., 11, 91, 10.1111/j.1550-7408.1964.tb01725.x
Chen, 2007, Inhibition of krr1 gene expression in Giardia canis by a virus-mediated hammerhead ribozyme, Vet. Parasitol., 143, 14, 10.1016/j.vetpar.2006.07.029
Clark, 1988, Triton-labile antigens in flagella isolated from Giardia lamblia, Parasitol. Res., 74, 415, 10.1007/BF00535140
Crossley, 1983, Characterization of proteins from the cytoskeleton of Giardia lamblia, J. Cell Sci., 59, 81, 10.1242/jcs.59.1.81
Crossley, 1985, Assembly of 2.5 nm filaments from giardin, a protein associated with cytoskeletal microtubules in Giardia, J. Cell Sci., 78, 205, 10.1242/jcs.78.1.205
Crossley, 1986, Immunocytochemical differentiation of microtubules in the cytoskeleton of Giardia lamblia using monoclonal antibodies to alpha-tubulin and polyclonal antibodies to associated low molecular weight proteins, J. Cell Sci., 80, 233, 10.1242/jcs.80.1.233
Dan, 2000, Inhibition of pyruvate-ferredoxin oxidoreductase gene expression in Giardia lamblia by a virus-mediated hammerhead ribozyme, Mol. Microbiol., 36, 447, 10.1046/j.1365-2958.2000.01863.x
Davids, 2008, Giardia lamblia aurora kinase: a regulator of mitosis in a binucleate parasite, Int. J. Parasitol., 38, 353, 10.1016/j.ijpara.2007.08.012
Davids, 2011, An atypical proprotein convertase in Giardia lamblia differentiation, Mol. Biochem. Parasitol., 175, 169, 10.1016/j.molbiopara.2010.11.008
Dawson, 2010, An insider's guide to the microtubule cytoskeleton of Giardia, Cell. Microbiol., 12, 588, 10.1111/j.1462-5822.2010.01458.x
Dawson, 2010, Life with eight flagella: flagellar assembly and division in Giardia, Curr. Opin. Microbiol., 13, 480, 10.1016/j.mib.2010.05.014
Dawson, 2013, Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists, Curr. Opin. Cell Biol., 25, 134, 10.1016/j.ceb.2012.11.005
Dawson, 2007, Kinesin-13 regulates flagellar, interphase, and mitotic microtubule dynamics in Giardia intestinalis, Eukaryot. Cell, 6, 2354, 10.1128/EC.00128-07
Desai, 1997, Microtubule polymerization dynamics, Annu. Rev. Cell Dev. Biol., 13, 83, 10.1146/annurev.cellbio.13.1.83
Dobell, 1932
Dutcher, 1995, Flagellar assembly in two hundred and fifty easy-to-follow steps, Trends Genet., 11, 398, 10.1016/S0168-9525(00)89123-4
Ebneter, 2014, The single epsin homolog in Giardia lamblia localizes to the ventral disk of trophozoites and is not associated with clathrin membrane coats, Mol. Biochem. Parasitol., 197, 24, 10.1016/j.molbiopara.2014.09.008
Ellis, 2003, Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization, J. Biol. Chem., 278, 1936, 10.1074/jbc.M209274200
Elmendorf, 2003, The cytoskeleton of Giardia lamblia, Int. J. Parasitol., 33, 3, 10.1016/S0020-7519(02)00228-X
Elmendorf, 2005, Examination of a novel head-stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil domains, Int. J. Parasitol., 35, 1001, 10.1016/j.ijpara.2005.03.009
Feely, 1986, A simplified method for in vitro excystation of Giardia muris, J. Parasitol., 72, 474, 10.2307/3281691
Feely, 1981, Isolation and purification of Giardia trophozoites from rat intestine, J. Parasitol., 67, 59, 10.2307/3280779
Feely, 1982, Effect of cytochalasin-B, low Ca++ concentration, iodoacetic acid, and quinacrine-HCl on the attachment of Giardia trophozoites in vitro, J. Parasitol., 68, 869, 10.2307/3280996
Feely, 1982, Giardia spp.: distribution of contractile proteins in the attachment organelle, Exp. Parasitol., 53, 145, 10.1016/0014-4894(82)90100-X
Feely, 1990, The biology of Giardia, 11
Friend, 1966, The fine structure of Giardia muris, J. Cell Biol., 29, 317, 10.1083/jcb.29.2.317
Fritz-Laylin, 2010, The genome of Naegleria gruberi illuminates early eukaryotic versatility, Cell, 140, 631, 10.1016/j.cell.2010.01.032
Garnham, 2012, The chemical complexity of cellular microtubules: tubulin post-translational modification enzymes and their roles in tuning microtubule functions, Cytoskeleton (Hoboken), 69, 442, 10.1002/cm.21027
Ghosh, 2001, How Giardia swim and divide, Infect. Immun., 69, 7866, 10.1128/IAI.69.12.7866-7872.2001
Hagen, 2011, Novel structural components of the ventral disc and lateral crest in Giardia intestinalis, PLoS Negl. Trop. Dis., 5, 10.1371/journal.pntd.0001442
Hansen, 2008, Tonic shock induces detachment of Giardia lamblia, PLoS Negl. Trop. Dis., 2, e169, 10.1371/journal.pntd.0000169
Hansen, 2006, Giardia lamblia attachment force is insensitive to surface treatments, Eukaryot. Cell, 5, 781, 10.1128/EC.5.4.781-783.2006
Hao, 2009, Analysis of intraflagellar transport in C. elegans sensory cilia, Methods Cell Biol, 93, 235, 10.1016/S0091-679X(08)93013-2
Harb, 2015, The eukaryotic pathogen databases: a functional genomic resource integrating data from human and veterinary parasites, Methods Mol. Biol., 1201, 1, 10.1007/978-1-4939-1438-8_1
Hardin, 2017, Myosin-independent cytokinesis in Giardia utilizes flagella to coordinate force generation and direct membrane trafficking, Proc. Natl. Acad. Sci. U. S. A., 114, E5854, 10.1073/pnas.1705096114
Hoeng, 2008, High-resolution crystal structure and in vivo function of a kinesin-2 homologue in Giardia intestinalis, Mol. Biol. Cell, 19, 3124, 10.1091/mbc.e07-11-1156
Holberton, 1973, Fine structure of the ventral disk apparatus and the mechanism of attachment in the flagellate Giardia muris, J. Cell Sci., 13, 11, 10.1242/jcs.13.1.11
Holberton, 1973, Mechanism of attachment of Giardia to the wall of the small intestine, Trans. R. Soc. Trop. Med. Hyg., 67, 29, 10.1016/0035-9203(73)90299-X
Holberton, 1974, Attachment of Giardia-a hydrodynamic model based on flagellar activity, J. Exp. Biol., 60, 207, 10.1242/jeb.60.1.207
Holberton, 1981, Arrangement of subunits in microribbons from Giardia, J. Cell Sci., 47, 167, 10.1242/jcs.47.1.167
Holberton, 1981, Isolation of the cytoskeleton from Giardia. Tubulin and a low-molecular-weight protein associated with microribbon structures, J. Cell Sci., 47, 139, 10.1242/jcs.47.1.139
House, 2011, Giardia flagellar motility is not directly required to maintain attachment to surfaces, PLoS Pathog., 7, 10.1371/journal.ppat.1002167
Hu, 2006, Cytoskeletal components of an invasion machine—the apical complex of Toxoplasma gondii, PLoS Pathog., 2, e13, 10.1371/journal.ppat.0020013
Ichikawa, 2018, Microtubule inner proteins: a meshwork of luminal proteins stabilizing the doublet microtubule, Bioessays, 40, 1700209, 10.1002/bies.201700209
Inge, 1988, Attachment of Giardia lamblia to rat intestinal epithelial cells, Gut, 29, 795, 10.1136/gut.29.6.795
Islam, 2018, New paradigm in ankyrin repeats: beyond protein-protein interaction module, Int. J. Biol. Macromol., 109, 1164, 10.1016/j.ijbiomac.2017.11.101
Jirakova, 2012, How nuclei of Giardia pass through cell differentiation: semi-open mitosis followed by nuclear interconnection, Protist, 163, 465, 10.1016/j.protis.2011.11.008
Kampmann, 2018, CRISPRi and CRISPRa screens in mammalian cells for precision biology and medicine, ACS Chem. Biol., 13, 406, 10.1021/acschembio.7b00657
Kang, 2010, Identification of end-binding 1 (EB1) interacting proteins in Giardia lamblia, Parasitol. Res., 106, 723, 10.1007/s00436-009-1687-3
Keller, 2005, Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes, Curr. Biol., 15, 1090, 10.1016/j.cub.2005.05.024
Kim, 2018, Roles of end-binding 1 protein and gamma-tubulin small complex in cytokinesis and flagella formation of Giardia lamblia, Microbiologyopen, 8, e748
Kim, 2019, Role of gamma-giardin in ventral disc formation of Giardia lamblia, Parasit. Vectors, 12, 227, 10.1186/s13071-019-3478-8
Kim, 2013, Identification of alpha-11 giardin as a flagellar and surface component of Giardia lamblia, Exp. Parasitol., 135, 227, 10.1016/j.exppara.2013.07.010
Kim, 2014, Characterization of microtubule-binding and dimerization activity of Giardia lamblia end-binding 1 protein, PLoS One, 9, 10.1371/journal.pone.0097850
Kim, 2017, Phosphorylation of serine 148 in Giardia lamblia end-binding 1 protein is important for cell division, J. Eukaryot. Microbiol., 64, 464, 10.1111/jeu.12384
Kozminski, 1993, A motility in the eukaryotic flagellum unrelated to flagellar beating, Proc. Natl. Acad. Sci. U. S. A., 90, 5519, 10.1073/pnas.90.12.5519
Kulda, 1995, Giardia in humans and animals, 225
Larson, 2013, CRISPR interference (CRISPRi) for sequence-specific control of gene expression, Nat. Protoc., 8, 2180, 10.1038/nprot.2013.132
Lauwaet, 2007, Protein phosphatase 2A plays a crucial role in Giardia lamblia differentiation, Mol. Biochem. Parasitol., 152, 80, 10.1016/j.molbiopara.2006.12.001
Lauwaet, 2011, Mining the Giardia genome and proteome for conserved and unique basal body proteins, Int. J. Parasitol., 41, 1079, 10.1016/j.ijpara.2011.06.001
Lechtreck, 2015, IFT-cargo interactions and protein transport in cilia, Trends Biochem. Sci., 40, 765, 10.1016/j.tibs.2015.09.003
Lenaghan, 2011, High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites, Proc. Natl. Acad. Sci. U. S. A., 108, E550, 10.1073/pnas.1106904108
Lenaghan, 2013, Modeling and analysis of propulsion in the multiflagellated micoorganism Giardia lamblia, Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 88, 012726, 10.1103/PhysRevE.88.012726
Li, 2006, Ankyrin repeat: a unique motif mediating protein-protein interactions, Biochemistry, 45, 15168, 10.1021/bi062188q
Luck, 1984, Genetic and biochemical dissection of the eucaryotic flagellum, J. Cell Biol., 98, 789, 10.1083/jcb.98.3.789
Magne, 1991, Role of cytoskeleton and surface lectins in Giardia duodenalis attachment to Caco2 cells, Parasitol. Res., 77, 659, 10.1007/BF00928679
Maia-Brigagao, 2013, New associated structures of the anterior flagella of Giardia duodenalis, Microsc. Microanal., 19, 1374, 10.1017/S1431927613013275
Manning, 2011, The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology, Genome Biol., 12, R66, 10.1186/gb-2011-12-7-r66
Manton, 1952, An electron microscope study of the spermatozoid of sphagnum, J. Exp. Bot., 3, 265, 10.1093/jxb/3.3.265
Mariante, 2005, Giardia lamblia: evaluation of the in vitro effects of nocodazole and colchicine on trophozoites, Exp. Parasitol., 110, 62, 10.1016/j.exppara.2005.01.007
Marshall, 2001, Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control, J. Cell Biol., 155, 405, 10.1083/jcb.200106141
Marshall, 2005, Flagellar length control system: testing a simple model based on intraflagellar transport and turnover, Mol. Biol. Cell, 16, 270, 10.1091/mbc.e04-07-0586
McInally, 2016, Eight unique basal bodies in the multi-flagellated diplomonad Giardia lamblia, Cilia, 5, 21, 10.1186/s13630-016-0042-4
McInally, 2019, Robust and stable transcriptional repression in Giardia using CRISPRi, Mol. Biol. Cell, 30, 119, 10.1091/mbc.E18-09-0605
McInally, 2020, Length-dependent disassembly maintains four different flagellar lengths in Giardia, eLife
McNally, 2018, Microtubule-severing enzymes: from cellular functions to molecular mechanism, J. Cell Biol., 217, 4057, 10.1083/jcb.201612104
Meng, 1996, Immunolocalization and sequence of caltractin/centrin from the early branching eukaryote Giardia lamblia, Mol. Biochem. Parasitol., 79, 103, 10.1016/0166-6851(96)02636-9
Merchant, 2007, The Chlamydomonas genome reveals the evolution of key animal and plant functions, Science, 318, 245, 10.1126/science.1143609
Midlej, 2009, Giardia lamblia behavior during encystment: how morphological changes in shape occur, Parasitol. Int., 58, 72, 10.1016/j.parint.2008.11.002
Moritz, 2001, Gamma-tubulin complexes and microtubule nucleation, Curr. Opin. Struct. Biol., 11, 174, 10.1016/S0959-440X(00)00187-1
Morrison, 2007, Genomic minimalism in the early diverging intestinal parasite Giardia lamblia, Science, 317, 1921, 10.1126/science.1143837
Nash, 1983, Excretory-secretory products of Giardia lamblia, J. Immunol., 131, 2004, 10.4049/jimmunol.131.4.2004
Nohria, 1992, Identification and characterization of gamma giardin and the gamma giardin gene from Giardia lamblia, Mol. Biochem. Parasitol., 56, 27, 10.1016/0166-6851(92)90151-9
Nohynkova, 2000, Localization of gamma-tubulin in interphase and mitotic cells of a unicellular eukaryote, Giardia intestinalis, Eur. J. Cell Biol., 79, 438, 10.1078/0171-9335-00066
Nohynkova, 2006, Cell division of Giardia intestinalis: flagellar developmental cycle involves transformation and exchange of flagella between mastigonts of a diplomonad cell, Eukaryot. Cell, 5, 753, 10.1128/EC.5.4.753-761.2006
Nosala, 2015, The critical role of the cytoskeleton in the pathogenesis of Giardia, Curr. Clin. Microbiol. Rep., 2, 155, 10.1007/s40588-015-0026-y
Nosala, 2018, 'Disc-o-Fever': getting down with Giardia's groovy microtubule organelle, Trends Cell Biol., 28, 99, 10.1016/j.tcb.2017.10.007
Nosala, 2019, Disc-associated proteins (DAPs) mediate the unusual hyperstability of Giardias ventral disc, BioRxiv, 361105
O'Regan, 2007, Mitotic regulation by NIMA-related kinases, Cell Div., 2, 25, 10.1186/1747-1028-2-25
Orozco, 1999, Movement of motor and cargo along cilia, Nature, 398, 674, 10.1038/19448
Ortega-Barria, 1994, Growth inhibition of the intestinal parasite Giardia lamblia by a dietary lectin is associated with arrest of the cell cycle, J. Clin. Investig., 94, 2283, 10.1172/JCI117591
Ostrowski, 2002, A proteomic analysis of human cilia: identification of novel components, Mol. Cell. Proteomics, 1, 451, 10.1074/mcp.M200037-MCP200
Owen, 1980, The ultrastructural basis of Giardia function, Trans. R. Soc. Trop. Med. Hyg., 74, 429, 10.1016/0035-9203(80)90043-7
Oxberry, 1994, Evaluation of the effects of albendazole and metronidazole on the ultrastructure of Giardia duodenalis, Trichomonas vaginalis and Spironucleus muris using transmission electron microscopy, Int. J. Parasitol., 24, 695, 10.1016/0020-7519(94)90123-6
Palm, 2003, Identification of immunoreactive proteins during acute human giardiasis, J. Infect. Dis., 187, 1849, 10.1086/375356
Palm, 2005, Developmental changes in the adhesive disk during Giardia differentiation, Mol. Biochem. Parasitol., 141, 199, 10.1016/j.molbiopara.2005.03.005
Paredez, 2011, An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins, Proc. Natl. Acad. Sci. U. S. A., 108, 6151, 10.1073/pnas.1018593108
Pazour, 2003, The vertebrate primary cilium is a sensory organelle, Curr. Opin. Cell Biol., 15, 105, 10.1016/S0955-0674(02)00012-1
Pazour, 2005, Proteomic analysis of a eukaryotic cilium, J. Cell Biol., 170, 103, 10.1083/jcb.200504008
Peattie, 1990, The giardins of Giardia lamblia: genes and proteins with promise, Parasitol. Today, 6, 52, 10.1016/0169-4758(90)90070-K
Pellegrini, 2005, Review: tubulin function, action of antitubulin drugs, and new drug development, Cancer Investig., 23, 264, 10.1081/CNV-200055970
Pfannenschmid, 2003, Chlamydomonas DIP13 and human NA14: a new class of proteins associated with microtubule structures is involved in cell division, J. Cell Sci., 116, 1449, 10.1242/jcs.00337
Piva, 2004, The median body of Giardia lamblia: an ultrastructural study, Biol. Cell., 96, 735, 10.1016/j.biolcel.2004.05.006
Poxleitner, 2008, Evidence for karyogamy and exchange of genetic material in the binucleate intestinal parasite Giardia intestinalis, Science, 319, 1530, 10.1126/science.1153752
Preisner, 2016, The cytoskeleton of parabasalian parasites comprises proteins that share properties common to intermediate filament proteins, Protist, 167, 526, 10.1016/j.protis.2016.09.001
Ren, 2017, Taming parasites by tailoring them, Front. Cell. Infect. Microbiol., 7, 292, 10.3389/fcimb.2017.00292
Rescher, 2004, Annexins—unique membrane binding proteins with diverse functions, J. Cell Sci., 117, 2631, 10.1242/jcs.01245
Rosenbaum, 2002, Intraflagellar transport, Nat. Rev. Mol. Cell Biol., 3, 813, 10.1038/nrm952
Roxstrom-Lindquist, 2006, Giardia immunity—an update, Trends Parasitol., 22, 26, 10.1016/j.pt.2005.11.005
Russell, 2017, Non-model model organisms, BMC Biol., 15, 55, 10.1186/s12915-017-0391-5
Sagolla, 2006, Three-dimensional analysis of mitosis and cytokinesis in the binucleate parasite Giardia intestinalis, J. Cell Sci., 119, 4889, 10.1242/jcs.03276
Scholey, 2003, Intraflagellar transport, Annu. Rev. Cell Dev. Biol., 19, 423, 10.1146/annurev.cellbio.19.111401.091318
Schwartz, 2012, A detailed, hierarchical study of Giardia lamblia's ventral disc reveals novel microtubule-associated protein complexes, PLoS One, 7, 10.1371/journal.pone.0043783
Song, 2015, Post-translational modifications of tubulin: pathways to functional diversity of microtubules, Trends Cell Biol., 25, 125, 10.1016/j.tcb.2014.10.004
Sousa, 2001, Adherence of Giardia lamblia trophozoites to Int-407 human intestinal cells, Clin. Diagn. Lab. Immunol., 8, 258, 10.1128/CDLI.8.2.258-265.2001
Szkodowska, 2002, Annexin XXI (ANX21) of Giardia lamblia has sequence motifs uniquely sdhared by giardial annexins and is specifically localized in the flagella, J. Biol. Chem., 277, 25703, 10.1074/jbc.M203260200
Tumova, 2007, Cell division of Giardia intestinalis: assembly and disassembly of the adhesive disc, and the cytokinesis, Cell Motil. Cytoskeleton, 64, 288, 10.1002/cm.20183
Vahrmann, 2008, alpha14-Giardin (annexin E1) is associated with tubulin in trophozoites of Giardia lamblia and forms local slubs in the flagella, Parasitol. Res., 102, 321, 10.1007/s00436-007-0758-6
Vicente, 2014, Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex, Mol. Biol. Cell, 25, 2774, 10.1091/mbc.e14-05-0975
Wei, 2010, Giardia lamblia: intracellular localization of alpha8-giardin, Exp. Parasitol., 126, 489, 10.1016/j.exppara.2010.05.028
Weiland, 2003, Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia annexin with glycosaminoglycan-binding activity, Int. J. Parasitol., 33, 1341, 10.1016/S0020-7519(03)00201-7
Weiland, 2005, Annexin-like alpha giardins: a new cytoskeletal gene family in Giardia lamblia, Int. J. Parasitol., 35, 617, 10.1016/j.ijpara.2004.12.009
Weisbrich, 2007, Structure-function relationship of CAP-Gly domains, Nat. Struct. Mol. Biol., 14, 959, 10.1038/nsmb1291
Wickstead, 2006, A “holistic” kinesin phylogeny reveals new kinesin families and predicts protein functions, Mol. Biol. Cell, 17, 1734, 10.1091/mbc.e05-11-1090
Wickstead, 2007, Dyneins across eukaryotes: a comparative genomic analysis, Traffic, 8, 1708, 10.1111/j.1600-0854.2007.00646.x
Woessner, 2012, The Giardia median body protein is a ventral disc protein that is critical for maintaining a domed disc conformation during attachment, Eukaryot. Cell, 11, 292, 10.1128/EC.05262-11
Wu, 2016, Immunolocalization of alpha18- and alpha12-giardin in Giardia lamblia trophozoites, Parasitol. Res., 115, 4183, 10.1007/s00436-016-5194-z