Network structure of cerebral cortex shapes functional connectivity on multiple time scales

Christopher J. Honey1, Rolf Kötter2,3, Michael Breakspear4, Olaf Sporns1
1Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405
2Cecile and Oskar Vogt Brain Research Institute and Institute of Anatomy II, Heinrich Heine University, Moorenstrasse 5, D-40225 Düsseldorf, Germany; and
3Department of Cognitive Neuroscience, Section of Neurophysiology and Neuroinformatics, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands;
4School of Psychiatry, University of New South Wales, and The Black Dog Institute, Randwick NSW 2031, Australia

Tóm tắt

Neuronal dynamics unfolding within the cerebral cortex exhibit complex spatial and temporal patterns even in the absence of external input. Here we use a computational approach in an attempt to relate these features of spontaneous cortical dynamics to the underlying anatomical connectivity. Simulating nonlinear neuronal dynamics on a network that captures the large-scale interregional connections of macaque neocortex, and applying information theoretic measures to identify functional networks, we find structure–function relations at multiple temporal scales. Functional networks recovered from long windows of neural activity (minutes) largely overlap with the underlying structural network. As a result, hubs in these long-run functional networks correspond to structural hubs. In contrast, significant fluctuations in functional topology are observed across the sequence of networks recovered from consecutive shorter (seconds) time windows. The functional centrality of individual nodes varies across time as interregional couplings shift. Furthermore, the transient couplings between brain regions are coordinated in a manner that reveals the existence of two anticorrelated clusters. These clusters are linked by prefrontal and parietal regions that are hub nodes in the underlying structural network. At an even faster time scale (hundreds of milliseconds) we detect individual episodes of interregional phase-locking and find that slow variations in the statistics of these transient episodes, contingent on the underlying anatomical structure, produce the transfer entropy functional connectivity and simulated blood oxygenation level-dependent correlation patterns observed on slower time scales.

Từ khóa


Tài liệu tham khảo

10.1016/0165-0173(94)00016-I

10.1146/annurev.ne.18.030195.003011

10.1038/35067550

10.1126/science.1099745

10.1093/acprof:oso/9780195301069.001.0001

10.1073/pnas.98.2.676

10.1038/35094500

10.1073/pnas.0135058100

10.1038/nn1616

10.1073/pnas.0504136102

10.1073/pnas.0604187103

10.1126/science.1131295

10.1038/17120

10.1073/pnas.0308538101

10.1038/30918

10.1385/NI:2:2:145

10.1093/cercor/bhi016

10.1523/JNEUROSCI.3874-05.2006

10.1093/cercor/bhj127

10.1073/pnas.0606005103

10.1093/cercor/10.2.127

10.1016/j.physd.2006.09.008

10.1385/NI:2:2:127

10.1088/0954-898X_14_4_305

10.1103/PhysRevLett.85.461

10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C

10.2307/3033543

10.1126/science.298.5594.824

10.1371/journal.pbio.0020369

10.1016/S0006-3495(81)84782-0

10.1063/1.166453

10.1023/B:JCNS.0000004841.66897.7d

10.1002/hbm.460020107

10.1016/S0896-6273(01)00178-7

10.1016/j.ijpsycho.2005.12.008

10.1093/cercor/1.1.1

10.1063/1.1607783

10.1002/cplx.20045

10.1162/089976600300014737

10.1016/S1053-8119(03)00142-3

10.1098/rstb.2001.0908

10.1098/rstb.2000.0548

10.1098/rstb.2005.1625

D Gleich MatlabBGL (Stanford University Institute for Computational and Mathematical Engineering, Stanford, CA, Version 1.01. (2006).

10.1103/PhysRevE.72.056708

10.1126/science.1065103

10.1142/S0218127407017628

10.1016/S1053-8119(03)00202-7

10.1097/00004647-199906000-00012

10.1002/mrm.1910390602

DC Van Essen, J Dickson, J Harwell, D Hanlon, CH Anderson, HA Drury J Am Med Inform Assoc 41, 1359–1378 (2001).