Geroscience and Alzheimer’s Disease Drug Development
Tóm tắt
Age is the most important risk factor for Alzheimer’s disease (AD). The acceptable age range for participation in AD clinical trials is 50 to 90, and this 40-year span incorporates enormous age-related change. Clinical trial participants tend to be younger and healthier than the general population. They are also younger than the general population of AD patients. Drug development from a geroscience perspective would take greater account of effects of aging on clinical trial outcomes. The AD clinical trial pipeline has diversified beyond the canonical targets of amyloid beta protein and tau. Many of these interventions apply to age-related disorders. Anti-inflammatory agents and bioenergetic and metabolic therapies are among the well represented classes in the pipeline and are applicable to AD and non-AD age-related conditions. Drug development strategies can be adjusted to better inform outcomes of trials regarding aged individuals. Inclusion of older individuals in the multiple ascending dose trials of Phase 1, use of geriatric-related clinical outcomes and biomarkers in Phase 2, and extension of these Phase 2 learnings to Phase 3 will result in a more comprehensive understanding of AD therapies and their relationship to aging. Clinical trials can employ a more comprehensive geriatric assessment approach and biomarkers more relevant to aging at baseline and as exploratory outcomes. Greater attention to the role of aging and its influence in AD clinical trials can result in better understanding of the generalizability of clinical trial findings to the older AD population.
Tài liệu tham khảo
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;S0140-6736(20):32205–4. doi: https://doi.org/10.1016/S0140-6736(20)32205-4.
Jack CR, Jr., Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–62. doi: https://doi.org/10.1016/j.jalz.2018.02.018.
Thakur S, Dhapola R, Sarma P, Medhi B, Reddy DH. Neuroinflammation in Alzheimer’s disease: current progress in molecular signaling and therapeutics. Inflammation. 2023;46(1):1–17. doi: https://doi.org/10.1007/s10753-022-01721-1.
Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021;384(18):1691–704. doi: https://doi.org/10.1056/NEJMoa2100708.
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2022. doi: https://doi.org/10.1056/NEJMoa2212948.
Esposto J, Balendara V. Brief about hallmarks of aging. In: Singh SK, Lin C, Mishra SK, editors. Anti-aging Drug Discovery on the Basis of Hallmarks of Aging. United Kingdom: Academic Press; 2022. p. 41–60.
Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13. doi: https://doi.org/10.1016/j.cell.2014.10.039.
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):518–36. doi: https://doi.org/10.1111/joim.13141.
Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: https://doi.org/10.1016/j.cell.2013.05.039.
Cummings J, Zhou Y, Lee G, Zhong K, Fonseca J, Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement (N Y). 2023;9(2):e12385. doi: https://doi.org/10.1002/trc2.12385.
Sierra F. The emergence of geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb Perspect Med. 2016;6(4):a025163. doi: https://doi.org/10.1101/cshperspect.a025163.
Sierra F, Caspi A, Fortinsky RH, et al. Moving geroscience from the bench to clinical care and health policy. J Am Geriatr Soc. 2021;69(9):2455–63. doi: https://doi.org/10.1111/jgs.17301.
Schubert D, Currais A, Goldberg J, Finley K, Petrascheck M, Maher P. Geroneuroprotectors: effective geroprotectors for the brain. Trends Pharmacol Sci. 2018;39(12):1004–7. doi: https://doi.org/10.1016/j.tips.2018.09.008.
Kepchia D, Currais A, Dargusch R, Finley K, Schubert D, Maher P. Geroprotective effects of Alzheimer’s disease drug candidates. Aging (Albany NY). 2021;13(3):3269–89. doi: https://doi.org/10.18632/aging.202631.
Pitkala KH, Strandberg TE. Clinical trials in older people. Age Ageing. 2022;51(5). doi: https://doi.org/10.1093/ageing/afab282.
Banzi R, Camaioni P, Tettamanti M, Bertele V, Lucca U. Older patients are still under-represented in clinical trials of Alzheimer’s disease. Alzheimers Res Ther. 2016;8:32. doi: https://doi.org/10.1186/s13195-016-0201-2.
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576–90. doi: https://doi.org/10.1038/s41574-018-0059-4.
Fulop T, Larbi A, Pawelec G, et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2023;64(2):109–22. doi: https://doi.org/10.1007/s12016-021-08899-6.
Robbins PD, Jurk D, Khosla S, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021;61:779–803. doi: https://doi.org/10.1146/annurev-pharmtox-050120-105018.
Xu M, Pirtskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. doi: https://doi.org/10.1038/s41591-018-0092-9.
Yousefzadeh MJ, Zhu Y, McGowan SJ, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28. doi: https://doi.org/10.1016/j.ebiom.2018.09.015.
Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;32(1):15–30. doi: https://doi.org/10.1016/j.cmet.2020.04.001.
Chen S, Gan D, Lin S, et al. Metformin in aging and aging-related diseases: clinical applications and relevant mechanisms. Theranostics. 2022;12(6):2722–40. doi: https://doi.org/10.7150/thno.71360.
Niedernhofer LJ, Kirkland JL, Ladiges W. Molecular pathology endpoints useful for aging studies. Ageing Res Rev. 2017;35:241–9. doi: https://doi.org/10.1016/j.arr.2016.09.012.
Justice JN, Ferrucci L, Newman AB, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience. 2018;40(5–6):419–36. doi: https://doi.org/10.1007/s11357-018-0042-y.
Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. doi: https://doi.org/10.2147/CIA.S158513.
Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med. 1997;336(17):1216–22. doi: https://doi.org/10.1056/NEJM199704243361704.
Jong CJ, Sandal P, Schaffer SW. The role of taurine in mitochondria health: more than just an antioxidant. Molecules. 2021;26(16). doi: https://doi.org/10.3390/molecules26164913.
Hey JA, Yu JY, Versavel M, et al. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of Alzheimer’s disease. Clin Pharmacokinet. 2018;57(3):315–33. doi: https://doi.org/10.1007/s40262-017-0608-3.
Selvarani R, Mohammed S, Richardson A. Effect of rapamycin on aging and age-related diseases-past and future. Geroscience. 2021;43(3):1135–58. doi: https://doi.org/10.1007/s11357-020-00274-1.
Halloran J, Hussong SA, Burbank R, et al. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience. 2012;223:102–13. doi: https://doi.org/10.1016/j.neuroscience.2012.06.054.
Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2(7):e1600584. doi: https://doi.org/10.1126/sciadv.1600584.
Watroba M, Szukiewicz D. Sirtuins at the service of healthy longevity. Front Physiol. 2021;12:724506. doi: https://doi.org/10.3389/fphys.2021.724506.
Kida Y, Goligorsky MS. Sirtuins, cell senescence, and vascular aging. Can J Cardiol. 2016;32(5):634–41. doi: https://doi.org/10.1016/j.cjca.2015.11.022.
Jesko H, Wencel P, Strosznajder RP, Strosznajder JB. Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res. 2017;42(3):876–90. doi: https://doi.org/10.1007/s11064-016-2110-y.
Fernando KKM, Wijayasinghe YS. Sirtuins as potential therapeutic targets for mitigating neuroinflammation associated with Alzheimer’s disease. Front Cell Neurosci. 2021;15:746631. doi: https://doi.org/10.3389/fncel.2021.746631.
Ungurianu A, Zanfirescu A, Margina D. Sirtuins, resveratrol and the intertwining cellular pathways connecting them. Ageing Res Rev. 2023;88:101936. doi: https://doi.org/10.1016/j.arr.2023.101936.
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology. 2015;85(16):1383–91. doi: https://doi.org/10.1212/WNL.0000000000002035.
Tsujikawa LM, Fu L, Das S, et al. Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin Epigenetics. 2019;11(1):102. doi: https://doi.org/10.1186/s13148-019-0696-z.
Cummings J, Schwartz GG, Nicholls SJ, et al. Cognitive effects of the BET protein inhibitor apabetalone: a prespecified Montreal Cognitive Assessment analysis nested in the BETonMACE randomized controlled trial. J Alzheimers Dis. 2021;83(4):1703–15. doi: https://doi.org/10.3233/JAD-210570.
Chakravarti D, LaBella KA, DePinho RA. Telomeres: history, health, and hallmarks of aging. Cell. 2021;184(2):306–22. doi: https://doi.org/10.1016/j.cell.2020.12.028.
Koh SH, Kwon HS, Choi SH, et al. Efficacy and safety of GV1001 in patients with moderate-to-severe Alzheimer’s disease already receiving donepezil: a phase 2 randomized, double-blind, placebo-controlled, multicenter clinical trial. Alzheimers Res Ther. 2021;13(1):66. doi: https://doi.org/10.1186/s13195-021-00803-w.
van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol. 2018;6(8):647–58. doi: https://doi.org/10.1016/S2213-8587(18)30026-3.
Scheyer O, Rahman A, Hristov H, et al. Female sex and Alzheimer’s risk: the menopause connection. J Prev Alzheimers Dis. 2018;5(4):225–30. doi: https://doi.org/10.14283/jpad.2018.34.
Henderson VW. Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem Mol Biol. 2014;142:99–106. doi: https://doi.org/10.1016/j.jsbmb.2013.05.010.
Xiong J, Kang SS, Wang Z, et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature. 2022;603(7901):470–6. doi: https://doi.org/10.1038/s41586-022-04463-0.
Lu PH, Masterman DA, Mulnard R, et al. Effects of testosterone on cognition and mood in male patients with mild Alzheimer disease and healthy elderly men. Arch Neurol. 2006;63(2):177–85. doi: https://doi.org/10.1001/archneur.63.2.nct50002.
Middeldorp J, Lehallier B, Villeda SA, et al. Preclinical assessment of young blood plasma for Alzheimer disease. JAMA Neurol. 2016;73(11):1325–33. doi: https://doi.org/10.1001/jamaneurol.2016.3185.
Sha SJ, Deutsch GK, Tian L, et al. Safety, tolerability, and feasibility of young plasma infusion in the plasma for Alzheimer symptom amelioration study: a randomized clinical trial. JAMA Neurol. 2019;76(1):35–40. doi: https://doi.org/10.1001/jamaneurol.2018.3288.
Boada M, Lopez OL, Olazaran J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study. Alzheimers Dement. 2020;16(10):1412–25. doi: https://doi.org/10.1002/alz.12137.
Boada M, Martinez-Lage P, Serrano-Castro P, Costa M, Paez A. Therapeutic plasma exchange with albumin: a new approach to treat Alzheimer’s disease. Expert Rev Neurother. 2021;21(8):843–9. doi: https://doi.org/10.1080/14737175.2021.1960823.
Brunet A, Goodell MA, Rando TA. Ageing and rejuvenation of tissue stem cells and their niches. Nat Rev Mol Cell Biol. 2023;24(1):45–62. doi: https://doi.org/10.1038/s41580-022-00510-w.
Hu J, Wang X. Alzheimer’s disease: from pathogenesis to mesenchymal stem cell therapy - bridging the missing link. Front Cell Neurosci. 2021;15:811852. doi: https://doi.org/10.3389/fncel.2021.811852.
Tompkins BA, DiFede DL, Khan A, et al. Allogeneic mesenchymal stem cells ameliorate aging frailty: a phase II randomized, double-blind, placebo-controlled clinical trial. J Gerontol A Biol Sci Med Sci. 2017;72(11):1513–22. doi: https://doi.org/10.1093/gerona/glx137.
Brody M, Agronin M, Herskowitz BJ, et al. Results and insights from a phase I clinical trial of Lomecel-B for Alzheimer’s disease. Alzheimers Dement. 2023;19(1):261–73. doi: https://doi.org/10.1002/alz.12651.
Kim HJ, Cho KR, Jang H, et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase I clinical trial. Alzheimers Res Ther. 2021;13(1):154. doi: https://doi.org/10.1186/s13195-021-00897-2.
Clare L, Wu YT, Teale JC, et al. Potentially modifiable lifestyle factors, cognitive reserve, and cognitive function in later life: A cross-sectional study. PLoS Med. 2017;14(3):e1002259. doi: https://doi.org/10.1371/journal.pmed.1002259.
Montine TJ, Cholerton BA, Corrada MM, et al. Concepts for brain aging: resistance, resilience, reserve, and compensation. Alzheimers Res Ther. 2019;11(1):22. doi: https://doi.org/10.1186/s13195-019-0479-y.
Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–63. doi: https://doi.org/10.1016/S0140-6736(15)60461-5.
Nuzum H, Stickel A, Corona M, Zeller M, Melrose RJ, Wilkins SS. Potential benefits of physical activity in MCI and dementia. Behav Neurol. 2020;2020:7807856. doi: https://doi.org/10.1155/2020/7807856.
Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible neuroprotective mechanisms of physical exercise in neurodegeneration. Int J Mol Sci. 2020;21(16). doi: https://doi.org/10.3390/ijms21165895.
Ruiz-Gonzalez D, Hernandez-Martinez A, Valenzuela PL, Morales JS, Soriano-Maldonado A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. 2021;128:394–405. doi: https://doi.org/10.1016/j.neubiorev.2021.05.025.
Ackert-Bicknell CL, Anderson LC, Sheehan S, et al. Aging research using mouse models. Curr Protoc Mouse Biol. 2015;5(2):95–133. doi: https://doi.org/10.1002/9780470942390.mo140195.
Whitehead JC, Hildebrand BA, Sun M, et al. A clinical frailty index in aging mice: comparisons with frailty index data in humans. J Gerontol A Biol Sci Med Sci. 2014;69(6):621–32. doi: https://doi.org/10.1093/gerona/glt136.
Takeda T. Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res. 2009;34(4):639–59. doi: https://doi.org/10.1007/s11064-009-9922-y.
Blumel L, Brosda J, Bert B, Hamann M, Dietz GPH. Moderately aged OFA rats as a novel model for mild age-related alterations in learning and memory Brain Cogn. 2021;154:105799. doi: https://doi.org/10.1016/j.bandc.2021.105799.
Gocmez SS, Yazir Y, Gacar G, et al. Etanercept improves aging-induced cognitive deficits by reducing inflammation and vascular dysfunction in rats. Physiol Behav. 2020;224:113019. doi: https://doi.org/10.1016/j.physbeh.2020.113019.
Miller MG, Thangthaeng N, Shukitt-Hale B. A clinically relevant frailty index for aging rats. J Gerontol A Biol Sci Med Sci. 2017;72(7):892–6. doi: https://doi.org/10.1093/gerona/glw338.
Plagenhoef MR, Callahan PM, Beck WD, Blake DT, Terry AV, Jr. Aged rhesus monkeys: cognitive performance categorizations and preclinical drug testing. Neuropharmacology. 2021;187:108489. doi: https://doi.org/10.1016/j.neuropharm.2021.108489.
Klotz U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab Rev. 2009;41(2):67–76. doi: https://doi.org/10.1080/03602530902722679.
Ao G, de Miguel M, Gomes A, et al. Toxicity and antitumor activity of novel agents in elderly patients with cancer included in phase 1 studies. Invest New Drugs. 2021;39(6):1694–701. doi: https://doi.org/10.1007/s10637-021-01150-1.
Buechel M, McGinnis A, Vesely SK, Wade KS, Moore KN, Gunderson CC. Consideration of older patients for enrollment in phase 1 clinical trials: Exploring treatment related toxicities and outcomes. Gynecol Oncol. 2018;149(1):28–32. doi: https://doi.org/10.1016/j.ygyno.2017.11.021.
Frontzkowski L, Ewers M, Brendel M, et al. Earlier Alzheimer’s disease onset is associated with tau pathology in brain hub regions and facilitated tau spreading. Nat Commun. 2022;13(1):4899. doi: https://doi.org/10.1038/s41467-022-32592-7.
Rahimi J, Kovacs GG. Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther. 2014;6(9):82. doi: https://doi.org/10.1186/s13195-014-0082-1.
Forrest SL, Kovacs GG. Current concepts of mixed pathologies in neurodegenerative diseases. Can J Neurol Sci. 2023;50(3):329–45. doi: https://doi.org/10.1017/cjn.2022.34.
Patrizio E, Calvani R, Marzetti E, Cesari M. Physical functional assessment in older adults. J Frailty Aging. 2021;10(2):141–9. doi: https://doi.org/10.14283/jfa.2020.61.
Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94. doi: https://doi.org/10.1093/geronj/49.2.m85.
George PP, Lun P, Ong SP, Lim WS. A rapid review of the measurement of intrinsic capacity in older adults. J Nutr Health Aging. 2021;25(6):774–82. doi: https://doi.org/10.1007/s12603-021-1622-6.
Mahoney FI, Barthel DW. Function Evaluation: The Barthel Index. Md State Med J. 1965;14:61–5.
Andrew MK, Matthews S, Kim JH, Riley ME, Curran D. An easy-to-implement clinical-trial frailty index based on accumulation of eficits: validation in zoster vaccine clinical trials. Clin Interv Aging. 2022;17:1261–74. doi: https://doi.org/10.2147/CIA.S364997.
Cummings J, Kinney J. Biomarkers for Alzheimer’s disease: context of use, qualification, and roadmap for clinical implementation. Medicina (Kaunas). 2022;58(7). doi: https://doi.org/10.3390/medicina58070952.
Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–84. doi: https://doi.org/10.1038/s41576-018-0004-3.
Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018;10(4):573–91. doi: https://doi.org/10.18632/aging.101414.
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab. 2017;28(3):199–212. doi: https://doi.org/10.1016/j.tem.2016.09.005.
Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32. doi: https://doi.org/10.1038/s41591-019-0675-0.
Sayed N, Huang Y, Nguyen K, et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging. 2021;1:598–615. doi: https://doi.org/10.1038/s43587-021-00082-y.
Vaiserman A, Krasnienkov D. Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Front Genet. 2020;11:630186. doi: https://doi.org/10.3389/fgene.2020.630186.
Kim S, Jazwinski SM. The gut microbiota and healthy aging: a mini-review. Gerontology. 2018;64(6):513–20. doi: https://doi.org/10.1159/000490615.
McCarthy D, Wang PL. Mortality postponement and compression at older ages in human cohorts. PLoS One. 2023;18(3):e0281752. doi: https://doi.org/10.1371/journal.pone.0281752.