Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress
Tài liệu tham khảo
Albuquerque, 2012, Caatinga revisited: ecology and conservation of an important seasonal dry forest, Sci. World J., 205182
Araújo, 2017, Bukholderia strains promote Mimosa spp. growth but not Macroptilium atropurpureum, Rev. Ciênc. Agron., 48, 41, 10.5935/1806-6690.20170005
Bettiol, 1995, Isolamento seletivo de Bacillus, 35
Boddey, 1990
Bouskill, 2016, Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition, Front. Microbiol., 7, 323
Brick, 1991, Rapid in-situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane, Appl. Environ. Microbiol., 57, 535, 10.1128/aem.57.2.535-538.1991
Buck, 1982, Nonstaining (KOH) method for determination of gram reactions of marine bacteria, Appl. Environ. Microbiol., 44, 992, 10.1128/aem.44.4.992-993.1982
Cattivelli, 2008, Drought tolerance improvement in crop plants: an integrated view from breeding to genomics, Field Crops Res., 105, 1, 10.1016/j.fcr.2007.07.004
Chauhan, 2010, The purB gene controls rhizosphere colonization by Pantoea agglomerans, Lett. Appl. Microbiol., 50, 205, 10.1111/j.1472-765X.2009.02779.x
Chodak, 2015, Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress, Ann. Microbiol., 65, 1627, 10.1007/s13213-014-1002-0
Cohen, 2015, Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels, Physiol. Plant., 153, 79, 10.1111/ppl.12221
Cruz, 2005, 146p
Döbereiner, 1995
Dourado, 2019, Osmotic adjustment in cowpea plants: Interference of methods for estimating osmotic potential at full turgor, Plant Physiol. Bioch., 145, 114, 10.1016/j.plaphy.2019.10.020
Etesami, 2015, Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria, 10.1007/978-3-319-24654-3_8
Food and Agriculture Organization (FAO), 2014
Forni, 2017, Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria, Plant Soil, 410, 10.1007/s11104-016-3007-x
Fuchslueger, 2016, Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event, J. Ecol., 104, 1453, 10.1111/1365-2745.12593
Gaiero, 2013, Inside the root microbiome: Bacterial root endophytes and plant growth promotion, Am. J. Bot., 100, 1738, 10.3732/ajb.1200572
Glick, 2014, Bacteria with ACC deaminase can promote plant growth and help to feed the world, Microbiol. Res., 169, 30, 10.1016/j.micres.2013.09.009
Gornall, 2010, Implications of climate change for agricultural productivity in the early twenty-first century, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 365, 2973, 10.1098/rstb.2010.0158
Govindasamy, 2010, Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture, Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture, 333
Gowtham, 2020, Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48, Microbiol. Res., 234
Hallsworth, 1998, Ethanol-induced water stress and fungal growth, J. Ferment. Bioeng., 86, 451, 10.1016/S0922-338X(98)80150-5
Hammer, 2001, Past: Paleontological statistics software package for education and data analysis, Palaeontol. Electronica, 4, 9
Hara, 2004, Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos e álicos de Presidente Figueiredo, Amazonas. Acta Amaz., 34, 343, 10.1590/S0044-59672004000300002
Hartmann, 2017, A decade of irrigation transforms the soil microbiome of a semi-arid pine forest, Mol. Ecol., 26, 1190, 10.1111/mec.13995
Hoagland, 1950, The water-culture method for growing plants without soil, Calif Agric (Berkeley), 347
Jochum, 2019, Bioprospecting Plant growth-promoting rhizobacteria that mitigate drought stress in grasses, Frontiers Microbiol., 10, 2106, 10.3389/fmicb.2019.02106
Kasim, 2013, Control of drought stress in wheat using plant-growth-promoting bacteria, J. Plant Growth Regul., 32, 122, 10.1007/s00344-012-9283-7
Kaushal, 2016, Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands, Ann. Microbiol., 66, 35, 10.1007/s13213-015-1112-3
Kavamura, 2013, Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought, Microbiol. Res., 168, 183, 10.1016/j.micres.2012.12.002
Kavamura, 2013, Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome, PLoSOne, 8
Kavamura, 2017, Draft genome sequence of plant growth-promoting drought-tolerant Bacillus sp. strain CMAA 1363 isolated from the Brazilian Caatinga biome, Genome Announc., 5, e01534, 10.1128/genomeA.01534-16
Kim, 2012, Enhancement of plant drought tolerance by microbes
King, 1954, Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med., 44, 301
Kumar, 2014, Screening of free living rhizobacteria associated with wheat rhizosphere for plant growth promoting traits, Afr. J. Agric. Res., 9, 1094, 10.5897/AJAR2013.7660
Kumar, 2016, Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.), Plant Signal. Behav., 11, 10.1080/15592324.2015.1071004
Kuss, 2007, Fixação de nitrogênio e produção de ácido indolacético in vitro por bactérias diazotróficas endofíticas, Pesqui. Agropecu. Bras., 42, 1459, 10.1590/S0100-204X2007001000013
Lane, 1991, 16S/23S rRNA sequencing
Lesk, 2016, Influence of extreme weather disasters on global crop production, Nature, 529, 84, 10.1038/nature16467
Lin, 2020, Influence of plant growth-promoting rhizobacteria on corn growth under drought stress, Commun. Soil Sci. Plant, 51, 250, 10.1080/00103624.2019.1705329
Martins, 2015, Mimosa caesalpiniifolia rhizobial isolates from different origins of the Brazilian Northeast, Arch. Microbiol., 197, 459, 10.1007/s00203-014-1078-8
Mishra, 2017, Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil, Anton. van Leeuw., 110, 253, 10.1007/s10482-016-0796-0
Mohammadipanah, 2016, Actinobacteria from arid and desert habitats: diversity and biological activity, Front. Microbiol., 6, 1541, 10.3389/fmicb.2015.01541
Montenegro, 2012, Impact of possible climate and land use changes in the semi arid regions: a case study from North Eastern Brazil, J. Hydrol., 434, 55, 10.1016/j.jhydrol.2012.02.036
Nakbanpote, 2014, Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions, J. Plant Interact., 9, 379, 10.1080/17429145.2013.842000
Naseem, 2014, Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of corn, J. Plant Interact., 9, 689, 10.1080/17429145.2014.902125
Naveed, 2014, Increased drought stress resilience of corn through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp, FD17. Environ. Exp. Bot., 97, 30, 10.1016/j.envexpbot.2013.09.014
Niu, 2018, Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress, Front. Microbiol., 8, 2580, 10.3389/fmicb.2017.02580
O’Toole, 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 28, 449, 10.1046/j.1365-2958.1998.00797.x
Pantüček, 2018, Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments, Appl. Environ. Microbiol., 84, 10.1128/AEM.01746-17
Pathak, 2017, Biofertilizer application in horticultural crops, 215
Paul, 2014, Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review, Agron. Sustain. Dev., 34, 737, 10.1007/s13593-014-0233-6
Paulo, 2012, An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation, Ciênc. Tecnol. Aliment., 32, 710, 10.1590/S0101-20612012005000094
Penrose, 2003, Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria, Physiol. Plant., 118, 10, 10.1034/j.1399-3054.2003.00086.x
Podile, 2013, Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion, Proc. Indian Natn. Sci. Acad., 80, 407, 10.16943/ptinsa/2014/v80i2/55117
Rana, 2011, Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat, Ann. Microbiol., 61, 893, 10.1007/s13213-011-0211-z
Ranum, 2014, Global maize production, utilization, and consumption, Ann. N. Y. Acad. Sci., 1312, 105, 10.1111/nyas.12396
Rao, 2016, An update on the rainfall characteristics of Brazil: seasonal variations and trends in 1979–2011, Int. J. Climatol., 36, 291, 10.1002/joc.4345
Rolli, 2015, Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait, Environ. Microbiol., 17, 316, 10.1111/1462-2920.12439
Sandhya, 2009, Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-p45, Biol. Fertil. Soils, 46, 17, 10.1007/s00374-009-0401-z
Sangoi, 2007, Área foliar e rendimento de grãos de híbridos de milho em diferentes populações de plantas, Rev. Bras. Milho Sorgo, 6, 263, 10.18512/1980-6477/rbms.v6n3p263-271
Santos, 2018
Sarma, 2014, Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21, Plant Soil, 377, 111, 10.1007/s11104-013-1981-9
Schimel, 2007, Microbial stress-response physiology and its implications for ecosystem function, Ecology, 88, 1386, 10.1890/06-0219
Schwartz, 2000, Temporary aquatic habitats: constraints and opportunities, Aquatic Ecol., 34, 3, 10.1023/A:1009944918152
Shahzad, 2017, Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato, PeerJ, 5, e3107, 10.7717/peerj.3107
Shahi, 2011, Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features, Afr. J. Biotechnol., 10, 8296, 10.5897/AJB11.602
Shirinbayan, 2019, Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions, Appl. Soil Ecol., 133, 138, 10.1016/j.apsoil.2018.09.015
Simões, 2008, Spatial and seasonal variation of microcrustaceans (Cladocera and Copepoda) in intermittent rivers in the Jequiezinho River Hydrographic Basin, in the Neotropical semiarid, Acta Limmol. Bras., 20, 197
Stoffel, 2016, Micorrizas arbusculares no crescimento de leguminosas arbóreas em substrato contendo rejeito de mineração de carvão, Cerne, 22, 181, 10.1590/01047760201622021969
Sukweenadhi, 2015, Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress, Microbiol. Res., 172, 7, 10.1016/j.micres.2015.01.007
Taketani, 2017, Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system, Microb. Ecol., 73, 153, 10.1007/s00248-016-0835-4
Timmusk, 2014, Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles, PLoS ONE, 9, 10.1371/journal.pone.0096086
Tiwari, 2018, 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress, Sci. Rep., 8, 17513, 10.1038/s41598-018-35565-3
Ullah, 2019, Review Plant growth promoting rhizobacteria-mediated amelioration of drought in crop plants, Soil Environ., 38, 1, 10.25252/SE/19/71760
Vardharajula, 2011, Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of corn under drought stress, J. Plant Interact., 6, 1, 10.1080/17429145.2010.535178
Vejan, 2016, Role of plant growth promoting rhizobacteria in agricultural sustainability - a review, Molecules, 21, 573, 10.3390/molecules21050573
Verma, 2001, Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice, J. Biotechnol., 91, 127, 10.1016/S0168-1656(01)00333-9
Wahyudi, 2019, Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter, Biodiversitas, 20, 10.13057/biodiv/d200916
Wang, 2013, Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1, FEMS Microbiol. Lett., 341, 45, 10.1111/1574-6968.12088
Wang, 2014, Survey of plant drought-resistance promoting bacteria from Populus euphratica tree living in arid area, Indian J. Microbiol., 54, 419, 10.1007/s12088-014-0479-3
Wang, 2013, Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon, J. Microbiol., 51, 477, 10.1007/s12275-013-2586-y
Yang, 2009, Rhizosphere bacteria help plants tolerate abiotic stress, Trends Plant Sci., 14, 1, 10.1016/j.tplants.2008.10.004
Zachow, 2013, Catch the best: novel screening strategy to select stress protecting agents for crop plants, Agronomy, 3, 794, 10.3390/agronomy3040794