Bacteria from tropical semiarid temporary ponds promote maize growth under hydric stress

Microbiological Research - Tập 240 - Trang 126564 - 2020
Victor Lucas Vieira Prudêncio de Araújo1, Mario Andrade Lira Junior1, Valdomiro Severino de Souza Júnior1, José Coelho de Araújo Filho2, Felipe José Cury Fracetto1, Fernando Dini Andreote3, Arthur Prudêncio de Araujo Pereira4, José Petrônio Mendes Júnior1, Felipe Martins do Rêgo Barros3, Giselle Gomes Monteiro Fracetto1
1Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, Pernambuco, 52171-900, Brazil
2Empresa Brasileira de Pesquisa Agropecuária (Embrapa Solos), Unidade de Execução de Pesquisa (UEP), Recife, Pernambuco 51020-240, Brazil
3Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Ciência do Solo, Piracicaba, São Paulo, 13400-970, Brazil
4Universidade Federal do Ceará, Centro de Ciências Agrárias, Departamento de Ciências do Solo, Fortaleza, Ceará, 60355-636, Brazil

Tài liệu tham khảo

Albuquerque, 2012, Caatinga revisited: ecology and conservation of an important seasonal dry forest, Sci. World J., 205182 Araújo, 2017, Bukholderia strains promote Mimosa spp. growth but not Macroptilium atropurpureum, Rev. Ciênc. Agron., 48, 41, 10.5935/1806-6690.20170005 Bettiol, 1995, Isolamento seletivo de Bacillus, 35 Boddey, 1990 Bouskill, 2016, Belowground response to drought in a tropical forest soil. II. Change in microbial function impacts carbon composition, Front. Microbiol., 7, 323 Brick, 1991, Rapid in-situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane, Appl. Environ. Microbiol., 57, 535, 10.1128/aem.57.2.535-538.1991 Buck, 1982, Nonstaining (KOH) method for determination of gram reactions of marine bacteria, Appl. Environ. Microbiol., 44, 992, 10.1128/aem.44.4.992-993.1982 Cattivelli, 2008, Drought tolerance improvement in crop plants: an integrated view from breeding to genomics, Field Crops Res., 105, 1, 10.1016/j.fcr.2007.07.004 Chauhan, 2010, The purB gene controls rhizosphere colonization by Pantoea agglomerans, Lett. Appl. Microbiol., 50, 205, 10.1111/j.1472-765X.2009.02779.x Chodak, 2015, Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress, Ann. Microbiol., 65, 1627, 10.1007/s13213-014-1002-0 Cohen, 2015, Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels, Physiol. Plant., 153, 79, 10.1111/ppl.12221 Cruz, 2005, 146p Döbereiner, 1995 Dourado, 2019, Osmotic adjustment in cowpea plants: Interference of methods for estimating osmotic potential at full turgor, Plant Physiol. Bioch., 145, 114, 10.1016/j.plaphy.2019.10.020 Etesami, 2015, Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase: bacterial traits required in rhizosphere, rhizoplane and/or endophytic competence by beneficial bacteria, 10.1007/978-3-319-24654-3_8 Food and Agriculture Organization (FAO), 2014 Forni, 2017, Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria, Plant Soil, 410, 10.1007/s11104-016-3007-x Fuchslueger, 2016, Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event, J. Ecol., 104, 1453, 10.1111/1365-2745.12593 Gaiero, 2013, Inside the root microbiome: Bacterial root endophytes and plant growth promotion, Am. J. Bot., 100, 1738, 10.3732/ajb.1200572 Glick, 2014, Bacteria with ACC deaminase can promote plant growth and help to feed the world, Microbiol. Res., 169, 30, 10.1016/j.micres.2013.09.009 Gornall, 2010, Implications of climate change for agricultural productivity in the early twenty-first century, Philos. Trans. R. Soc. Lond., B, Biol. Sci., 365, 2973, 10.1098/rstb.2010.0158 Govindasamy, 2010, Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture, Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture, 333 Gowtham, 2020, Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48, Microbiol. Res., 234 Hallsworth, 1998, Ethanol-induced water stress and fungal growth, J. Ferment. Bioeng., 86, 451, 10.1016/S0922-338X(98)80150-5 Hammer, 2001, Past: Paleontological statistics software package for education and data analysis, Palaeontol. Electronica, 4, 9 Hara, 2004, Características fisiológicas e ecológicas de isolados de rizóbios oriundos de solos ácidos e álicos de Presidente Figueiredo, Amazonas. Acta Amaz., 34, 343, 10.1590/S0044-59672004000300002 Hartmann, 2017, A decade of irrigation transforms the soil microbiome of a semi-arid pine forest, Mol. Ecol., 26, 1190, 10.1111/mec.13995 Hoagland, 1950, The water-culture method for growing plants without soil, Calif Agric (Berkeley), 347 Jochum, 2019, Bioprospecting Plant growth-promoting rhizobacteria that mitigate drought stress in grasses, Frontiers Microbiol., 10, 2106, 10.3389/fmicb.2019.02106 Kasim, 2013, Control of drought stress in wheat using plant-growth-promoting bacteria, J. Plant Growth Regul., 32, 122, 10.1007/s00344-012-9283-7 Kaushal, 2016, Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands, Ann. Microbiol., 66, 35, 10.1007/s13213-015-1112-3 Kavamura, 2013, Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought, Microbiol. Res., 168, 183, 10.1016/j.micres.2012.12.002 Kavamura, 2013, Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome, PLoSOne, 8 Kavamura, 2017, Draft genome sequence of plant growth-promoting drought-tolerant Bacillus sp. strain CMAA 1363 isolated from the Brazilian Caatinga biome, Genome Announc., 5, e01534, 10.1128/genomeA.01534-16 Kim, 2012, Enhancement of plant drought tolerance by microbes King, 1954, Two simple media for the demonstration of pyocyanin and fluorescin, J. Lab. Clin. Med., 44, 301 Kumar, 2014, Screening of free living rhizobacteria associated with wheat rhizosphere for plant growth promoting traits, Afr. J. Agric. Res., 9, 1094, 10.5897/AJAR2013.7660 Kumar, 2016, Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.), Plant Signal. Behav., 11, 10.1080/15592324.2015.1071004 Kuss, 2007, Fixação de nitrogênio e produção de ácido indolacético in vitro por bactérias diazotróficas endofíticas, Pesqui. Agropecu. Bras., 42, 1459, 10.1590/S0100-204X2007001000013 Lane, 1991, 16S/23S rRNA sequencing Lesk, 2016, Influence of extreme weather disasters on global crop production, Nature, 529, 84, 10.1038/nature16467 Lin, 2020, Influence of plant growth-promoting rhizobacteria on corn growth under drought stress, Commun. Soil Sci. Plant, 51, 250, 10.1080/00103624.2019.1705329 Martins, 2015, Mimosa caesalpiniifolia rhizobial isolates from different origins of the Brazilian Northeast, Arch. Microbiol., 197, 459, 10.1007/s00203-014-1078-8 Mishra, 2017, Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil, Anton. van Leeuw., 110, 253, 10.1007/s10482-016-0796-0 Mohammadipanah, 2016, Actinobacteria from arid and desert habitats: diversity and biological activity, Front. Microbiol., 6, 1541, 10.3389/fmicb.2015.01541 Montenegro, 2012, Impact of possible climate and land use changes in the semi arid regions: a case study from North Eastern Brazil, J. Hydrol., 434, 55, 10.1016/j.jhydrol.2012.02.036 Nakbanpote, 2014, Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions, J. Plant Interact., 9, 379, 10.1080/17429145.2013.842000 Naseem, 2014, Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of corn, J. Plant Interact., 9, 689, 10.1080/17429145.2014.902125 Naveed, 2014, Increased drought stress resilience of corn through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp, FD17. Environ. Exp. Bot., 97, 30, 10.1016/j.envexpbot.2013.09.014 Niu, 2018, Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress, Front. Microbiol., 8, 2580, 10.3389/fmicb.2017.02580 O’Toole, 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 28, 449, 10.1046/j.1365-2958.1998.00797.x Pantüček, 2018, Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments, Appl. Environ. Microbiol., 84, 10.1128/AEM.01746-17 Pathak, 2017, Biofertilizer application in horticultural crops, 215 Paul, 2014, Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review, Agron. Sustain. Dev., 34, 737, 10.1007/s13593-014-0233-6 Paulo, 2012, An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation, Ciênc. Tecnol. Aliment., 32, 710, 10.1590/S0101-20612012005000094 Penrose, 2003, Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria, Physiol. Plant., 118, 10, 10.1034/j.1399-3054.2003.00086.x Podile, 2013, Root colonization and quorum sensing are the driving forces of plant growth promoting rhizobacteria (PGPR) for growth promotion, Proc. Indian Natn. Sci. Acad., 80, 407, 10.16943/ptinsa/2014/v80i2/55117 Rana, 2011, Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat, Ann. Microbiol., 61, 893, 10.1007/s13213-011-0211-z Ranum, 2014, Global maize production, utilization, and consumption, Ann. N. Y. Acad. Sci., 1312, 105, 10.1111/nyas.12396 Rao, 2016, An update on the rainfall characteristics of Brazil: seasonal variations and trends in 1979–2011, Int. J. Climatol., 36, 291, 10.1002/joc.4345 Rolli, 2015, Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait, Environ. Microbiol., 17, 316, 10.1111/1462-2920.12439 Sandhya, 2009, Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-p45, Biol. Fertil. Soils, 46, 17, 10.1007/s00374-009-0401-z Sangoi, 2007, Área foliar e rendimento de grãos de híbridos de milho em diferentes populações de plantas, Rev. Bras. Milho Sorgo, 6, 263, 10.18512/1980-6477/rbms.v6n3p263-271 Santos, 2018 Sarma, 2014, Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21, Plant Soil, 377, 111, 10.1007/s11104-013-1981-9 Schimel, 2007, Microbial stress-response physiology and its implications for ecosystem function, Ecology, 88, 1386, 10.1890/06-0219 Schwartz, 2000, Temporary aquatic habitats: constraints and opportunities, Aquatic Ecol., 34, 3, 10.1023/A:1009944918152 Shahzad, 2017, Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato, PeerJ, 5, e3107, 10.7717/peerj.3107 Shahi, 2011, Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features, Afr. J. Biotechnol., 10, 8296, 10.5897/AJB11.602 Shirinbayan, 2019, Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions, Appl. Soil Ecol., 133, 138, 10.1016/j.apsoil.2018.09.015 Simões, 2008, Spatial and seasonal variation of microcrustaceans (Cladocera and Copepoda) in intermittent rivers in the Jequiezinho River Hydrographic Basin, in the Neotropical semiarid, Acta Limmol. Bras., 20, 197 Stoffel, 2016, Micorrizas arbusculares no crescimento de leguminosas arbóreas em substrato contendo rejeito de mineração de carvão, Cerne, 22, 181, 10.1590/01047760201622021969 Sukweenadhi, 2015, Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress, Microbiol. Res., 172, 7, 10.1016/j.micres.2015.01.007 Taketani, 2017, Dry season constrains bacterial phylogenetic diversity in a semi-arid rhizosphere system, Microb. Ecol., 73, 153, 10.1007/s00248-016-0835-4 Timmusk, 2014, Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles, PLoS ONE, 9, 10.1371/journal.pone.0096086 Tiwari, 2018, 1-Aminocyclopropane-1-carboxylic acid deaminase producing beneficial rhizobacteria ameliorate the biomass characters of Panicum maximum Jacq. by mitigating drought and salt stress, Sci. Rep., 8, 17513, 10.1038/s41598-018-35565-3 Ullah, 2019, Review Plant growth promoting rhizobacteria-mediated amelioration of drought in crop plants, Soil Environ., 38, 1, 10.25252/SE/19/71760 Vardharajula, 2011, Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of corn under drought stress, J. Plant Interact., 6, 1, 10.1080/17429145.2010.535178 Vejan, 2016, Role of plant growth promoting rhizobacteria in agricultural sustainability - a review, Molecules, 21, 573, 10.3390/molecules21050573 Verma, 2001, Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice, J. Biotechnol., 91, 127, 10.1016/S0168-1656(01)00333-9 Wahyudi, 2019, Streptomyces spp. from rhizosphere soil of maize with potential as plant growth promoter, Biodiversitas, 20, 10.13057/biodiv/d200916 Wang, 2013, Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1, FEMS Microbiol. Lett., 341, 45, 10.1111/1574-6968.12088 Wang, 2014, Survey of plant drought-resistance promoting bacteria from Populus euphratica tree living in arid area, Indian J. Microbiol., 54, 419, 10.1007/s12088-014-0479-3 Wang, 2013, Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon, J. Microbiol., 51, 477, 10.1007/s12275-013-2586-y Yang, 2009, Rhizosphere bacteria help plants tolerate abiotic stress, Trends Plant Sci., 14, 1, 10.1016/j.tplants.2008.10.004 Zachow, 2013, Catch the best: novel screening strategy to select stress protecting agents for crop plants, Agronomy, 3, 794, 10.3390/agronomy3040794