CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors

Springer Science and Business Media LLC - Tập 25 - Trang 12053-12063 - 2018
Amir Muhammad1, Mohammad Younas1, Mashallah Rezakazemi2
1Department of Chemical Engineering, University of Engineering and Technology, Peshawar, Pakistan
2Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran

Tóm tắt

This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.

Tài liệu tham khảo

Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Reviews 4(1):37–59. https://doi.org/10.1002/cben.201600010 Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321 Bird, R.B., Stewart, W.E., 2002. Transport phenomena Bringas E, San Román MF, Irabien JA, Ortiz I (2009) An overview of the mathematical modelling of liquid membrane separation processes in hollow fibre contactors. J Chem Technol Biotechnol 84(11):1583–1614. https://doi.org/10.1002/jctb.2231 Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54(1):215–226. https://doi.org/10.1002/pen.23555 Fasihi M, Shirazian S, Marjani A, Rezakazemi M (2012) Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation. Math Comput Model 56(11-12):278–286. https://doi.org/10.1016/j.mcm.2012.01.010 Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2017) Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environ Technol:1–9. https://doi.org/10.1080/09593330.2017.1365946 Gabelman A, Hwang S-T (1999) Hollow fiber membrane contactors. J Membr Sci 159(1-2):61–106. https://doi.org/10.1016/S0376-7388(99)00040-X Gameiro, M.L.F., Ismael, M.R.C., Reis, M.T.A., MR, J., 2007. Copper recovery from ammoniacal media using hollow fibre contactors Proceedings of European Congress of Chemical Engineering (ECCE-6) Copenhagen, pp. 16-20 González-Muñoz MJ, Luque S, Álvarez J, Coca J (2004) Simulation of integrated extraction and stripping processes using membrane contactors. Desalination 163(1-3):1–12. https://doi.org/10.1016/S0011-9164(04)90170-1 Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55(3-4):1540–1557. https://doi.org/10.1016/j.mcm.2011.10.047 Juang R-S, Huang H-L (2003) Mechanistic analysis of solvent extraction of heavy metals in membrane contactors. J Membr Sci 213(1-2):125–135. https://doi.org/10.1016/S0376-7388(02)00519-7 Mohammadi T, Maghami M, Rezakazemi M (2017) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Period Polytech Chem Eng:1–6 Muhammad A, Ali W, Ahmad I, Younas M (2016) Performance evaluation of hollow fiber membrane contactors for dispersion-free extraction of Cu2+ through modelling and simulation. Period Polytech Chem Eng 61:133–143 Muhammad A, Younas M, Rezakazemi M (2017) Quasi-dynamic modeling of dispersion-free extraction of aroma compounds using hollow fiber membrane contactor. Chem Eng Res Des 127:52–61. https://doi.org/10.1016/j.cherd.2017.09.007 Pabby AK, Sastre AM (2013) State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J Membr Sci 430:263–303. https://doi.org/10.1016/j.memsci.2012.11.060 Prasad R, Sirkar KK (1992) Membrane-based solvent extraction. In: Ho WSW, Sirkar KK (eds) Membrane Handbook. Springer US, Boston, MA, pp 727–763. https://doi.org/10.1007/978-1-4615-3548-5_41 Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO 2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process Process Intensif 108:27–34. https://doi.org/10.1016/j.cep.2016.07.001 Rezakazemi M (2018) CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination. https://doi.org/10.1016/j.desal.2017.12.048 Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017a) H 2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrog Energy 42(22):15211–15225. https://doi.org/10.1016/j.ijhydene.2017.04.044 Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014a) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39(5):817–861. https://doi.org/10.1016/j.progpolymsci.2014.01.003 Rezakazemi M, Ghafarinazari A, Shirazian S, Khoshsima A (2013a) Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. Polym Eng Sci 53(6):1272–1278. https://doi.org/10.1002/pen.23375 Rezakazemi M, Heydari I, Zhang Z (2017b) Hybrid systems: combining membrane and absorption technologies leads to more efficient acid gases (CO 2 and H 2 S) removal from natural gas. J CO2 Util 18:362–369. https://doi.org/10.1016/j.jcou.2017.02.006 Rezakazemi M, Iravaninia M, Shirazian S, Mohammadi T (2013b) Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane. Polym Eng Sci 53(7):1494–1501. https://doi.org/10.1002/pen.23410 Rezakazemi M, Khajeh A, Mesbah M (2017c) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett. https://doi.org/10.1007/s10311-017-0693-4 Rezakazemi M, Mirzaei S, Asghari M, Ivakpour J (2017d) Aluminum oxide nanoparticles for highly efficient asphaltene separation from crude oil using ceramic membrane technology. Oil Gas Sci Technol Rev IFP Energies Nouvelles 72:34 Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrog Energy 38(32):14035–14041. https://doi.org/10.1016/j.ijhydene.2013.08.062 Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A (2011a) CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J 168(3):1217–1226. https://doi.org/10.1016/j.cej.2011.02.019 Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011b) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379(1-2):224–232. https://doi.org/10.1016/j.memsci.2011.05.070 Rezakazemi M, Sadrzadeh M, Matsuura T (2018a) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41. https://doi.org/10.1016/j.pecs.2017.11.002 Rezakazemi M, Sadrzadeh M, Mohammadi T (2018b) Separation via pervaporation techniques through polymeric membranes. In: George SC (ed) Wilson, R., S, a.K. Elsevier, Transport Properties of Polymeric Membranes, pp 243–263 Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017e) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic-inorganic composite polymer electrolyte membranes. Springer international publishing, Cham, pp 311–325. https://doi.org/10.1007/978-3-319-52739-0_11 Rezakazemi M, Shahidi K, Mohammadi T (2012a) Hydrogen separation and purification using crosslinkable PDMS/zeolite a nanoparticles mixed matrix membranes. Int J Hydrog Energy 37(19):14576–14589. https://doi.org/10.1016/j.ijhydene.2012.06.104 Rezakazemi M, Shahidi K, Mohammadi T (2012b) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrog Energy 37(22):17275–17284. https://doi.org/10.1016/j.ijhydene.2012.08.109 Rezakazemi M, Shahidi K, Mohammadi T (2014b) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalin Water Treat 54:1–8 Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011c) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168(1):60–67. https://doi.org/10.1016/j.cej.2010.12.034 Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012c) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392. https://doi.org/10.1016/j.desal.2011.10.030 Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5(100):82460–82470. https://doi.org/10.1039/C5RA13609A Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18. https://doi.org/10.1016/j.jngse.2016.01.033 Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrog Energy 38(2):1128–1135. https://doi.org/10.1016/j.ijhydene.2012.10.069 Sadrzadeh, M., Rezakazemi, M., Mohammadi, T., 2018. Fundamentals and measurement techniques for gas transport in polymers, in: Wilson, R., S, a.K., George, S.C. (Eds.), Transport Properties of Polymeric Membranes. Elsevier, pp. 391–423 Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53(7):1487–1493. https://doi.org/10.1002/pen.23406 Shirazian S, Marjani A, Rezakazemi M (2011) Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Eng Comput 28:189–198 Shirazian, S., Pishnamazi, M., Rezakazemi, M., Nouri, A., Jafari, M., Noroozi, S., Marjani, A., 2012a. Implementation of the finite element method for simulation of mass transfer in membrane contactors. Chem. Eng. Technol. 35, n/a-n/a Shirazian S, Rezakazemi M, Marjani A, Moradi S (2012b) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295. https://doi.org/10.1016/j.desal.2011.11.039 Shirazian S, Rezakazemi M, Marjani A, Rafivahid MS (2012c) Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors. Asia Pac J Chem Eng 7(6):828–834. https://doi.org/10.1002/apj.641 Yang C, Cussler EL (2000) Reaction dependent extraction of copper and nickel using hollow fibers. J Membr Sci 166(2):229–238. https://doi.org/10.1016/S0376-7388(99)00265-3 Younas M, Druon-Bocquet S, Romero J, Sanchez J (2015) Experimental and theoretical investigation of distribution equilibria and kinetics of copper(II) extraction with LIX 84 I and TFA. Sep Sci Technol 50(10):1523–1531. https://doi.org/10.1080/01496395.2014.978943 Younas M, Druon-Bocquet S, Sanchez J (2010) Kinetic and dynamic study of liquid–liquid extraction of copper in a HFMC: experimentation, modeling, and simulation. AICHE J 56(6):1469–1480. https://doi.org/10.1002/aic.12076 Younas M, Druon-Bocquet S, Sanchez J (2011) Experimental and theoretical mass transfer transient analysis of copper extraction using hollow fiber membrane contactors. J Membr Sci 382(1-2):70–81. https://doi.org/10.1016/j.memsci.2011.07.040 Yun CH, Prasad R, Guha AK, Sirkar KK (1993) Hollow fiber solvent extraction removal of toxic heavy metals from aqueous waste streams. Ind Eng Chem Res 32(6):1186–1195. https://doi.org/10.1021/ie00018a026 Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, Quan X (2017) Modeling of a CO2-piperazine-membrane absorption system. Chem Eng Res Des. https://doi.org/10.1016/j.cherd.2017.11.024