State filtering and parameter estimation for state space systems with scarce measurements
Tài liệu tham khảo
Scarpiniti, 2013, Nonlinear spline adaptive filtering, Signal Process., 93, 772, 10.1016/j.sigpro.2012.09.021
Zhang, 2011, Robust FIR equalization for time-varying communication channels with intermittent observations via an LMI approach, Signal Process., 91, 1651, 10.1016/j.sigpro.2011.01.011
Li, 2012, Robust H-infinity filtering for nonlinear stochastic systems with uncertainties and Markov delays, Automatica, 48, 159, 10.1016/j.automatica.2011.09.045
Shi, 2010, Kalman filter based identification for systems with randomly missing measurements in a network environment, Int. J. Control, 83, 538, 10.1080/00207170903273987
Shi, 2009, Output feedback stabilization of networked control systems with random delays modeled by Markov chains, IEEE Trans. Autom. Control, 54, 1668, 10.1109/TAC.2009.2020638
Shi, 2011, Robust mixed H-2/H-infinity control of networked control systems with random time delays in both forward and backward communication links, Automatica, 47, 754, 10.1016/j.automatica.2011.01.022
Fang, 2010, Genetic adaptive state estimation with missing input/output data, Proc. Inst. Mech. Eng., Part I, J. Syst. Control Eng., 224, 611, 10.1243/09596518JSCE888
Ding, 2014, Combined state and least squares parameter estimation algorithms for dynamic systems, Appl. Math. Model., 38, 403, 10.1016/j.apm.2013.06.007
Vörös, 2003, Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones, IEEE Trans. Autom. Control, 48, 2203, 10.1109/TAC.2003.820146
Liu, 2010, Convergence of stochastic gradient algorithm for multivariable ARX-like systems, Comput. Math. Appl., 59, 2615, 10.1016/j.camwa.2010.01.030
Yu, 2010, Identification of Hammerstein output-error systems with two-segment nonlinearities, J. Control Intell. Syst., 38, 194
Ding, 2014, Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems, Signal Process., 97, 31, 10.1016/j.sigpro.2013.10.018
Wang, 2014, Least squares algorithm for an input nonlinear system with a dynamic subspace state space model, Nonlinear Dyn., 75, 49, 10.1007/s11071-013-1048-8
Ding, 2013, Decomposition based fast least squares algorithm for output error systems, Signal Process., 93, 1235, 10.1016/j.sigpro.2012.12.013
Albertos, 1999, Output prediction under scarce data operation, Automatica, 35, 1671, 10.1016/S0005-1098(99)00078-3
Wallin, 2001, Extensions to “Output prediction under scarce data operation, Automatica, 37, 2069, 10.1016/S0005-1098(01)00161-3
Sanchis, 2007, Design of robust output predictors under scarce measurements with time-varying delays, Automatica, 43, 281, 10.1016/j.automatica.2006.08.016
Gibson, 2005, Robust maximum-likelihood estimation of multivariable dynamic systems, Automatica, 41, 1667, 10.1016/j.automatica.2005.05.008
Raghavan, 2006, Identification of chemical processes with irregular output sampling, Control Eng. Pract., 14, 467, 10.1016/j.conengprac.2005.01.015
Sanchis, 2002, Recursive identification under scarce measurements, Automatica, 38, 535, 10.1016/S0005-1098(01)00236-9
Ding, 2010, Least squares parameter estimation with irregularly missing data, Int. J. Adapt. Control Signal Process., 24, 540
Ding, 2009, Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica, 45, 324, 10.1016/j.automatica.2008.08.007
Ding, 2010, Time series AR modeling with missing observations based on the polynomial transformation, Math. Comput. Model., 51, 527, 10.1016/j.mcm.2009.11.016
Liu, 2014, An efficient hierarchical identification method for general dual-rate sampled-data systems, Automatica, 50, 962, 10.1016/j.automatica.2013.12.025
Ding, 2010, Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE Trans. Autom. Control, 55, 1976, 10.1109/TAC.2010.2050713
Ding, 2011, Parameter estimation with scarce measurements, Automatica, 47, 1646, 10.1016/j.automatica.2011.05.007
Ding, 2010, Multi-innovation least squares identification for linear and pseudo-linear regression models, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 40, 767, 10.1109/TSMCB.2009.2028871
Ljung, 1999
Ding, 2005, Hierarchical identification of lifted state-space models for general dual-rate systems, IEEE Trans. Circuits Syst. I: Regul. Pap., 52, 1179, 10.1109/TCSI.2005.849144
Goodwin, 1984
Viberg, 1995, Subspace-based methods for the identification of linear time-invariant systems, Automatica, 31, 1835, 10.1016/0005-1098(95)00107-5
Ding, 2012, Performance analysis of the auxiliary model based least squares identification algorithm for one-step state delay systems, Int. J. Comput. Math., 89, 2019, 10.1080/00207160.2012.698008
Ljung, 1979, Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems, IEEE Trans. Autom. Control, 24, 36, 10.1109/TAC.1979.1101943
Li, 2001, Identification of fast-rate models from multirate data, Int. J. Control, 74, 680, 10.1080/00207170010018904
Li, 2003, Application of dual-rate modeling to CCR octane quality inferential control, IEEE Trans. Control Syst. Technol., 11, 43, 10.1109/TCST.2002.806433
Sheng, 2005, Optimal filtering for multirate systems, IEEE Trans. Circuits Syst. II: Express Br., 52, 228, 10.1109/TCSII.2004.842009
Liu, 2010, Least squares based iterative identification for a class of multirate systems, Automatica, 46, 549, 10.1016/j.automatica.2010.01.007
Ding, 2014, Hierarchical parameter estimation algorithms for multivariable systems using measurement information, Inf. Sci., 10.1016/j.ins.2014.02.103
Hu, 2013, Iterative and recursive least squares estimation algorithms for moving average systems, Simul. Model. Pract. Theory, 34, 12, 10.1016/j.simpat.2012.12.009
Wang, 2014, Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems, Appl. Math. Lett., 29, 36, 10.1016/j.ins.2014.02.103
Ding, 2013, Two-stage least squares based iterative estimation algorithm for CARARMA system modeling, Appl. Math. Model., 37, 4798, 10.1016/j.apm.2012.10.014
Ding, 2013, Coupled-least-squares identification for multivariable systems, IET Control Theory Appl., 7, 68, 10.1049/iet-cta.2012.0171
Liu, 2009, Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Appl. Math. Comput., 215, 1477, 10.1016/j.amc.2009.07.012
Liu, 2013, Consistency of the extended gradient identification algorithm for multi-input multi-output systems with moving average noises, Int. J. Comput. Math., 90, 1840, 10.1080/00207160.2013.772143
Ding, 2013, Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle, IET Control Theory Appl., 7, 176, 10.1049/iet-cta.2012.0313
Carini, 2013, Efficient adaptive identification of linear-in-the-parameters nonlinear filters using periodic input sequences, Signal Process., 93, 1210, 10.1016/j.sigpro.2012.12.012
Mileounis, 2013, A sparsity driven approach to cumulant based identification and order determination, Signal Process., 93, 1892, 10.1016/j.sigpro.2013.02.006
Wang, 2013, Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle, Inf. Sci., 222, 203, 10.1016/j.ins.2012.07.064
Hu, 2014, Recursive extended least squares parameter estimation for Wiener nonlinear systems with moving average noises, Circuits Syst. Signal Process., 33, 655, 10.1007/s00034-013-9652-x