Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method

Archive of Applied Mechanics - Tập 91 - Trang 4817-4834 - 2021
Hang Xu1, Yan Qing Wang1,2, Yufei Zhang3
1Department of Mechanics, Northeastern University, Shenyang, China
2Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, Shenyang, China
3College of Aerospace Engineering, Shenyang Aerospace University, Shenyang, China

Tóm tắt

This work analyzes the free vibration of a spinning functionally graded graphene platelet-reinforced metal foam (FG-GPLRMF) beam. The differential transformation method is extended to analyze flap-wise bending vibration and chordwise bending vibration with Coriolis force effect for the first time. The beam is modeled using the Euler–Bernoulli beam theory. The Halpin–Tsai micromechanics model is utilized to predict effective material properties. Various types of graphene platelet (GPL) and porosity distributions are considered. The governing equations and corresponding boundary conditions of the FG-GPLRMF beam are obtained via Hamilton’s principle. Results show that the vibration characteristics of the FG-GPLRMF beam are affected by the GPL geometry size, types of porosity, and GPL distributions. Among different types of porosity, the Porosity-A causes the highest fundamental natural frequency, while the Porosity-B corresponds to the lowest one of the spinning FG-GPLRMF beam in most cases. Moreover, the GPL pattern and porosity distribution have a coupled effect on the bending vibration of the spinning FG-GPLRMF beam.

Tài liệu tham khảo

Wang, Y.Q., Zhao, H.L.: Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Arch. Appl. Mech. 89(11), 2335–2349 (2019). https://doi.org/10.1007/s00419-019-01579-0 Rabiei, A., O’Neill, A.T.: A study on processing of a composite metal foam via casting. Mater. Sci. Eng. a-Struct. Mater. Proper. Microstruct. Process. 404(1–2), 159–164 (2005). https://doi.org/10.1016/j.msea.2005.05.089 Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017). https://doi.org/10.1016/j.matdes.2016.12.061 Groven, L.J., Puszynski, J.A.: Solution combustion synthesis of carbon nanotube loaded nickel foams. Mater. Lett. 73, 126–128 (2012). https://doi.org/10.1016/j.matlet.2012.01.033 Duarte, I., Ventura, E., Olhero, S., Ferreira, J.M.F.: An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon 95, 589–600 (2015). https://doi.org/10.1016/j.carbon.2015.08.065 Zhang, Z., Ding, J., Xia, X.C., Sun, X.H., Song, K.H., Zhao, W.M., Liao, B.: Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes. Mater. Des. 88, 359–365 (2015). https://doi.org/10.1016/j.matdes.2015.09.017 Garcia-Macias, E., Rodriguez-Tembleque, L., Saez, A.: Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos. Struct. 186, 123–138 (2018). https://doi.org/10.1016/j.compstruct.2017.11.076 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H.H., Yu, Z.Z., Koratkar, N.: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 3884–3890 (2009). https://doi.org/10.1021/nn9010472 Mao, J.-J., Zhang, W.: Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Compos. Struct. 203, 551–565 (2018). https://doi.org/10.1016/j.compstruct.2018.06.076 Wang, A., Chen, H., Hao, Y., Zhang, W.: Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys. 9, 550–559 (2018). https://doi.org/10.1016/j.rinp.2018.02.062 Zhang, W., Niu, Y., Behdinan, K.: Vibration characteristics of rotating pretwisted composite tapered blade with graphene coating layers. Aerosp. Sci. Technol. 98, 105644 (2020). https://doi.org/10.1016/j.ast.2019.105644 Zhao, T.Y., Cui, Y.S., Pan, H.G., Yuan, H.Q., Yang, J.: Free vibration analysis of a functionally graded graphene nanoplatelet reinforced disk-shaft assembly with whirl motion. Int. J. Mech. Sci. 197, 106335 (2021). https://doi.org/10.1016/j.ijmecsci.2021.106335 Zhao, T.Y., Ma, Y., Zhang, H.Y., Pan, H.G., Cai, Y.: Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle. Appl. Math. Model. (2021). https://doi.org/10.1016/j.apm.2020.12.025 Dong, Y., Li, X., Gao, K., Li, Y., Yang, J.: Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment. Nonlinear Dyn. 99(2), 981–1000 (2020). https://doi.org/10.1007/s11071-019-05297-8 Dong, Y., Zhu, B., Wang, Y., He, L., Li, Y., Yang, J.: Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads. Appl. Math. Model. 71, 331–348 (2019). https://doi.org/10.1016/j.apm.2019.02.024 Dong, Y., Zhu, B., Wang, Y., Li, Y., Yang, J.: Nonlinear free vibration of graded graphene reinforced cylindrical shells: effects of spinning motion and axial load. J. Sound Vib. 437, 79–96 (2018). https://doi.org/10.1016/j.jsv.2018.08.036 Yang, Y., Chen, B., Lin, W., Li, Y., Dong, Y.: Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation. Aerosp. Sci. Technol. 110, 106495 (2021). https://doi.org/10.1016/j.ast.2021.106495 Teng, M.W., Wang, Y.Q.: Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Walled Struct. 164, 107799 (2021). https://doi.org/10.1016/j.tws.2021.107799 Ye, C., Wang, Y.Q.: Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances. Nonlinear Dyn. 104(3), 2051–2069 (2021). https://doi.org/10.1007/s11071-021-06401-7 Yas, M.H., Rahimi, S.: Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Appl. Math. Mech.-Engl. Edn. 41(8), 1209–1226 (2020). https://doi.org/10.1007/s10483-020-2634-6 Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev–Ritz method. Compos. Struct. 193, 281–294 (2018). https://doi.org/10.1016/j.compstruct.2018.03.090 Dong, Y., He, L., Wang, L., Li, Y., Yang, J.: Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: an analytical study. Aerosp. Sci. Technol. 82, 466–478 (2018). https://doi.org/10.1016/j.ast.2018.09.037 Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B-Eng. 145, 1–13 (2018). https://doi.org/10.1016/j.compositesb.2018.03.009 Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019). https://doi.org/10.1016/j.ast.2018.12.022 Banerjee, J.R.: Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method. J. Sound Vib. 233(5), 857–875 (2000). https://doi.org/10.1006/jsvi.1999.2855 Chung, J., Yoo, H.H.: Dynamic analysis of a rotating cantilever beam by using the finite element method. J. Sound Vib. 249(1), 147–164 (2002). https://doi.org/10.1006/jsvi.2001.3856 Huang, C.L., Lin, W.Y., Hsiao, K.M.: Free vibration analysis of rotating Euler beams at high angular velocity. Comput. Struct. 88(17–18), 991–1001 (2010). https://doi.org/10.1016/j.compstruc.2010.06.001 Shahba, A., Attarnejad, R., Zarrinzadeh, H.: Free vibration analysis of centrifugally stiffened tapered functionally graded beams. Mech. Adv. Mater. Struct. 20(5), 331–338 (2013). https://doi.org/10.1080/15376494.2011.627634 Aksencer, T., Aydogdu, M.: Flapwise vibration of rotating composite beams. Compos. Struct. 134, 672–679 (2015). https://doi.org/10.1016/j.compstruct.2015.08.130 Adair, D., Jaeger, M.: Vibration analysis of a uniform pre-twisted rotating Euler–Bernoulli beam using the modified Adomian decomposition method. Math. Mech. Solids 23(9), 1345–1363 (2018). https://doi.org/10.1177/1081286517720843 Dong, S.P., Li, L., Zhang, D.G.: Vibration analysis of rotating functionally graded tapered beams with hollow circular cross-section. Aerosp. Sci. Technol. 95, 105476 (2019). https://doi.org/10.1016/j.ast.2019.105476 Zhou, J.: Differential Transformation and Its Applications for Electrical Circuits. Huazhong University Press, Wuhan (1986) Özdemir, Ö., Kaya, M.: Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method. J. Sound Vib. 289(1–2), 413–420 (2006). https://doi.org/10.1016/j.jsv.2005.01.055 Arvin, H.: The flapwise bending free vibration analysis of micro-rotating timoshenko beams using the differential transform method. J. Vib. Control 24(20), 4868–4884 (2018). https://doi.org/10.1177/1077546317736706 Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R-Rep. 74(10), 281–350 (2013). https://doi.org/10.1016/j.mser.2013.08.001 De Villoria, R.G., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55(9), 3025–3031 (2007). https://doi.org/10.1016/j.actamat.2007.01.007 Affdl, J.H., Kardos, J.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976). https://doi.org/10.1002/pen.760160512 Gibson, I., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. Lond. A Math. Phys. Sci. 382(1782), 43–59 (1982). https://doi.org/10.1098/rspa.1982.0088 Kane, T., Ryan, R., Banerjeer, A.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control. Dyn. 10(2), 139–151 (1987). https://doi.org/10.2514/3.20195 Eisenhart, L.P.: Introduction to Differential Geometry. Princeton University Press, Princeton (2015) Gorman, D.J.: Free Vibration Analysis of Beams and Shafts(Book). Research Supported by the National Research Council of Canada. Wiley-Interscience, New York (1975) Banerjee, J.R., Kennedy, D.: Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects. J. Sound Vib. 333(26), 7299–7312 (2014). https://doi.org/10.1016/j.jsv.2014.08.019 Cheng, J.L., Xu, H., Yan, A.Z.: Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect. Mech. Based Des. Struct. Mach. 34(1), 25–47 (2006). https://doi.org/10.1080/15367730500501587 Yang, J., Jiang, L., Chen, D.C.: Dynamic modelling and control of a rotating Euler–Bernoulli beam. J. Sound Vib. 274(3–5), 863–875 (2004). https://doi.org/10.1016/S0022-460X(03)00611-4 Yoo, H.H., Shin, S.H.: Vibration analysis of rotating cantilever beams. J. Sound Vib. 212(5), 807–828 (1998). https://doi.org/10.1006/jsvi.1997.1469 Keskin, Y., Oturanc, G.: Reduced differential transform method for partial differential equations. Int. J. Nonlinear Sci. Numer. Simul. 10(6), 741–749 (2009). https://doi.org/10.1515/IJNSNS.2009.10.6.741 Wright, A., Smith, C., Thresher, R., Wang, J.: Vibration modes of centrifugally stiffened beams. J. Appl. Mech. 49, 197–202 (1982). https://doi.org/10.1115/1.3161966