Influence of the metallic nanoparticles on the arabinogalactan optical properties
Tóm tắt
Metallic nanoparticles are a powerful tool of modern photonics allowing one to modify and control the optical properties of materials. Arabinogalactan (AG)—a complex organic molecule, offers a convenient way for nanoparticle fabrication due to its chemical properties. In the current paper the refractive index and optical transparency of arabinogalactan and AG-nanoparticle composite was studied by means of wavelength-domain interferometry.
Tài liệu tham khảo
Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem., Ser. B, 2003, vol. 107, pp. 668–677.
Castro, J.C.A., Surface plasmon resonance of a few particles linear arrays, J. Electromagn. Anal. Appl., 2011, vol. 03, no. 11, pp. 458–464.
Jain, P.K., El-Sayed, I.H., and El-Sayed, M.A., Au nanoparticles target cancer, Nanotoday, 2007, vol. 2, no. 1, pp. 18–29.
Watson, C., Ge, J., Cohen, J., Pyrgiotakis, G., Engelward, B.P., and Demokritou, P., High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology, ACS Nano, 2014, vol. 8, no. 3, pp. 2118–2133.
Schepetkin, I.A. and Quinn, M.T., Botanical polysaccharides: macrophage immunomodulation and therapeutic potential, Int. Immunopharmacol., 2006, vol. 6, no. 3, pp. 317–333.
Polyakov, N. E., Magyar, A., and Kispert, L.D., Photochemical and optical properties of water-soluble xanthophyll antioxidants: aggregation vs. complexation, J. Phys. Chem., Ser. B, 2013, vol. 117, no. 35, pp. 10173–10182.
Wang, Z. and Jiang, Y., Wavenumber scanning-based Fourier transform white-light interferometry, Appl. Opt., 2012, vol. 51, no. 22, pp. 5512–5516.
Saleh, B.E.A. and Teich, M.C., Fundamentals of Photonics, N.Y.: John Wiley & Sons, 1991, p. 947.
Ushakov, N.A. and Liokumovich, L.B., Resolution limits of extrinsic Fabry-Perot interferometric displacement sensors utilizing wavelength scanning interrogation, Appl. Opt., 2014, vol. 53, no. 23, pp. 5092–5099.
Shen, F. and Wang, A., Frequency-estimation-based signal-processing algorithm for white-light optical fiber Fabry-Perot interferometers, Appl. Opt., 2005, vol. 44, no. 25, pp. 5206–5214.
Ushakov, N.A. and Liokumovich, L.B., Investigation of baseline measurement resolution of a Si plate-based extrinsic Fabry-Perot interferometer, Proc. SPIE, 2014, vol. 9132, p. 913214.
Ushakov, N.A., Liokumovich, L.B., and Medvedev, A., EFPI signal processing method providing picometer-level resolution in cavity length measurement, Proc. SPIE, 2013, vol. 8789, p. 87890Y.
Han, M., Zhang, Y., Shen, F., Pickrell, G.R., and Wang, A., Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors, Opt. Lett., 2004, vol. 29, no. 15, pp. 1736–1738.
Chen, J.-H., Zhao, J.-R., Huang, X.-G., and Huang, Z.-J., Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass, Appl. Opt., 2010, vol. 49, no. 29, pp. 5592–5596.
Sukhov, B.G., Aleksandrova, G.P., Grishchenko, L.A., Feoktistova, L.P., Sapozhnikov, A.N., Proidakova, O.A., T’kov, A.V., Medvedeva, S.A., and Trofimov, B.A., Nanobiocomposites of noble metals based on arabinogalactan: preparation and properties, J. Struct. Chem., 2007, vol. 48, no. 5, pp. 979–984.